Review Article
Genetic modeling of ovarian phenotypes in mice for the study of human polycystic ovary syndrome

Yi Feng1,2, Xin Li3, Ruijin Shao3

1Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; 2Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College; Institute of Acupuncture Research (WHO Collaborating Center for Traditional Medicine); Institutes of Brain Science, Fudan University, Shanghai, China; 3Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China

Received November 28, 2012; Accepted December 29, 2012; Epub January 21, 2013; Published January 30, 2013

Abstract: Polycystic ovary syndrome (PCOS) presents with a range of clinical complications including hyperandrogenism, polycystic ovaries, chronic oligo/anovulation, infertility, and metabolic alterations related to insulin resistance. Because the mechanism by which this disorder develops is poorly understood, information from experimental models of human disease phenotypes may help to define the mechanisms for the initiation and development of PCOS-related pathological events. The establishment of animal models compatible with human PCOS is challenging, and applying the lessons learned from these models to human PCOS is often complicated. In this mini-review we provide examples of currently available genetic mouse models, their ovarian phenotypes, and their possible relationship to different aspects of human PCOS. Because of the practical and ethical limitations of studying PCOS-related events in humans, our understanding of the mechanisms that contribute to the etiology of human PCOS may be enhanced through further study of these transgenic and knockout mouse models.

Keywords: PCOS, hemorrhagic cystic follicles, transgenic and knockout mice

Introduction
Polycystic ovary syndrome (PCOS), a complex genetic disorder, is a significant women’s health issue due to its high incidence and the fact that it often occurs before puberty [1]. It is estimated to affect 8–17% of women of reproductive age worldwide, and the number of reported cases of human PCOS increases annually [2]. The disorder presents with a wide range of clinical complications including hyperandrogenism, polycystic ovaries, chronic oligo/anovulation, infertility, hyperinsulinemia, insulin resistance, and a higher prevalence of obesity [3]. The etiology of the disease and the mechanisms by which this disorder progresses are still unclear, and this makes understanding the pathophysiology of human PCOS challenging. Although abnormal gene expression profiles in the ovaries and theca cells of women with PCOS have been identified [4, 5], transgenic and knockout (KO) mouse models with pathological ovarian phenotypes mimicking those found in human PCOS are still of great interest. The value of developing such animal models is in their providing a means to systematically analyze the mechanisms underlying the development of PCOS. These models can also provide new insights into the etiology of PCOS and provide opportunities to explore diverse aspects of the disease such as drug development.

A polycystic ovary morphology is consistent with, but not essential for, the diagnosis of human PCOS [3]. Pathological ovarian features include arrest of follicular development, accumulation of multiple follicular cysts, and an increase in ovarian stromal thickness. These features lead to chronic oligo- or anovulation and subsequent infertility [3, 6].

Autocrine, paracrine, and endocrine factors are necessary for normal ovarian function in mammals [6], and proper ovarian function is depen-
Poly cystic ovary-like mouse models

Several lines of evidence indicate that changes in the production of luteinizing hormone (LH) in the pituitary gland are important for the development of cystic follicles in human PCOS. For example, women suffering from PCOS exhibit significantly increased levels of circulating LH compared to healthy controls [7]. Ovarian theca cells are the cell type that predominately expresses the LH receptor [8], and these cells become hypersensitive to LH during the development of human PCOS [1, 9]. Furthermore, chronic treatment with human chorionic gonadotropin (hCG) [10] or overexpression of LH and hCG [11-13] in female mice induces cystic follicle formation in the ovary. However, development of cystic or hemorrhagic follicles does not always occur along with an increase in LH levels in female mice that overexpress hCG under the control of different promoters [14, 15]. Although female follicle-stimulating hormone (FSH)β knockout mice have been shown to have increased levels of circulating LH, there is no evidence for the development of cystic or hemorrhagic follicles in FSH-deficient female mice [16]. In addition, overexpression of FSHβ leads to detectable numbers of cystic or hemorrhagic follicles without changes to circulating LH levels [17]. Thus, although LH is essential for the later stages of follicular development (from preovulatory to periovulatory stages) and ovulation, these results argue in favor of a primary role for LH in the formation of cystic or hemorrhagic follicles in the ovary.

It is generally accepted that elevated androgens are the main culprit behind the development of PCOS [1]. It is notable, however, that polycystic ovaries exist in women during pubertal development [18] and in women with hyperandrogenism [1] even when LH secretion and pulsatility is normal [19]. It has been shown that long-term treatment with estradiol valerate (EV) or dihydrotestosterone causes the formation of polycystic ovaries in rats [20-23]. Furthermore, treatment with letrozole, an aromatase cytochrome P450 (P450arom) blocker, inhibits androgen-to-estrogen conversion and leads to the development of massive multiple follicular cysts in rats [23]. Thus, both clinical and experimental studies suggest that a dynamic equilibrium among ovarian steroid hormones plays a significant role in the development of multiple cystic follicles under both physiological and pathological conditions.
Polycystic ovary-like mouse models

Table 1. Published mouse models that have ovarian alterations and their accompanying PCOS-like phenotypes

<table>
<thead>
<tr>
<th>Transgenic or knockout models</th>
<th>Ovarian phenotype</th>
<th>Ovulation</th>
<th>Infertility</th>
<th>Anterior pituitary</th>
<th>Sex steroids</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Follicular cysts</td>
<td>Hemorrhagic cysts</td>
<td>TC / IC</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>2. Overexpression of bovine LHβ</td>
<td>+, large</td>
<td>+, frequent hyperplasia</td>
<td>No</td>
<td>Yes</td>
<td>n.d.</td>
<td>↑</td>
</tr>
<tr>
<td>3. ERαβKO</td>
<td>+</td>
<td>+, frequent hyperplasia</td>
<td>No</td>
<td>Yes</td>
<td>–</td>
<td>↑</td>
</tr>
<tr>
<td>4. ERαKO</td>
<td>+, large</td>
<td>+, frequent hyperplasia</td>
<td>No</td>
<td>Yes</td>
<td>–</td>
<td>↑</td>
</tr>
<tr>
<td>5. TC-specific ERαKO with PMSG/hCG stimulation</td>
<td>+, large</td>
<td>+, frequent hyperplasia</td>
<td>Yes (oocytes ↓)</td>
<td>Age-dependent</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>6. Overexpression of NGF</td>
<td>No</td>
<td>No</td>
<td>n.d.</td>
<td>Yes</td>
<td>No</td>
<td>–</td>
</tr>
</tbody>
</table>

TC, theca cells; IC, interstitial cells; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2, 17β-estradiol; P4, progesterone; T, testosterone; A, androstenedione; PMSG, pregnant mare’s serum gonadotropin; hCG, human chorionic gonadotropin; ER, estrogen receptor; NGF, nerve growth factor; hPAI-1, human plasminogen activator inhibitor-1; +, presence; –, no changes vs. wild-type controls; ↑, increased vs. wild-type controls; ↓, decreased vs. wild-type controls; n.d., not determined.

biosynthesis in P450arom-expressing granulosa cells or the estrogenic action on ERα-expressing theca cells is likely involved in the formation of cystic and hemorrhagic follicles.

Because human PCOS is often associated with metabolic disturbances [3, 18], caution should be taken when selecting the appropriate transgenic or KO models based solely on their ovarian phenotype. In addition to impaired ovarian function and fertility, the onset of insulin resistance and diabetes observed in adult female ERαKO mice [37] mimics what is seen in some PCOS patients [1, 18]. Thus, activation of ERα may serve as a critical link between reproduction and metabolic disturbances. Although it remains to be determined what effects theca cell-specific deletion of ERα has on metabolism, the ERαKO mouse model can be useful for progressive studies of ovarian dysfunction and metabolic changes or for expanded studies that seek to understand the complex PCOS signature.

Manipulation of endogenous estrogen levels by treatment with EV or gonadotropin from pregnant mare serum has previously been shown to increase the production of ovarian nerve growth factor (NGF) in rat theca cells and to induce the formation of follicular cysts [38, 39]. Moreover, intraovarian treatment with a neutralizing anti-serum to NGF in conjunction with systemic exposure to an antisense oligodeoxynucleotide to the p75 NGF receptor reduces the number of precystic and cystic follicles [39]. This demonstrates that it is possible to prevent the development of cystic follicles by inhibiting NGF signaling. Transgenic NGF female mice, however, are indistinguishable from wild-type animals in all major reproductive functions and a detailed histological analysis did not reveal polycystic ovaries in these animals [40]. Interestingly, these transgenic NGF mice were found to be susceptible to challenge with gonadotropins (FSH and LH). After treatment with gonadotropins, the mice presented with a detectable ovarian phenotype that included the formation of massive follicular cysts [40] suggesting that endogenous steroid hormones participate in NGF-mediated ovarian dysfunction. More research needs to be done to determine whether the abnormal ovarian NGF signaling results in metabolic changes, and to elucidate what the downstream target of the NGF signaling pathway may be in relation to the development of polycystic ovaries.

Another factor implicated in human PCOS is the glycoprotein PAI-1. Several studies have shown that women with PCOS have increased levels of PAI-1 and increased PAI-1 activity [41-44]. It has also been shown that the PAI-1 polymorphism is significantly associated with the risk of developing PCOS [45]. Both pathological and
histological studies have been performed in mice overexpressing PAI-1 [35] and these mice have been found to have polycystic ovaries and increased testosterone levels that are comparable to what are seen in human PCOS. Thus, the transgenic PAI-1 mouse model could be used for future experimental investigations into the many gaps in the understanding of the interactions between reproductive and metabolic processes in human PCOS.

Concluding remarks

PCOS is a complicated endocrine disorder whose pathophysiology is the result of the interactions, combinations, and contributions of various genetic and environmental factors. Because of the heterogeneous nature of PCOS [3], it is worth noting that the majority of PCOS-like animal models rely upon external chemical treatments to be able to focus on particular aspects of the disease's clinical pathology. As outlined above, transgenic and knockout mouse models do not replicate the full spectrum of human PCOS, but they do provide opportunities to gain deeper insight into the development of PCOS. Polycystic ovaries are the morphological ovarian phenotype in human PCOS [3, 6], and there is evidence for a primary ovarian defect being the root cause of human PCOS. The use of different transgenic and knockout mouse models with their own unique ovarian phenotype(s) may help to identify and quantify changes in reproductive and endocrine networks in these animals that may lead to important clinical insights into the development of PCOS in women.

Acknowledgement

The work was supported by the Swedish Medical Research Council (Grant 5859), Jane and Dan Olsson's Foundation, the Hjalmar Svensson Foundation, Anna Cederberg's Foundation, Åke Wiberg's Foundation, Wilhelm-Martina Lundgren's Foundation, the Wenner-Gren Foundation, and the Royal Society of Arts and Sciences in Gothenburg.

Disclosure statement

The authors have declared that there is no conflict of interest.

Address Correspondence to: Dr. Ruijin Shao, Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden. Phone: +46-31 7863408; Fax: +46-31 7863512; E-mail: ruijin.shao@fysiologi.gu.se

References

Polycystic ovary-like mouse models


