Erratum

A斯塔xanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis via inhibiting activation of MAPK/NF-κB: Am J Transl Res. 2019; 11(3): 1884-1894

Xueding Cai1*, Yanfan Chen1*, Xiaona Xie2, Dan Yao1, Cheng Ding1, Mayun Chen1

1Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China; 2Pulmonary Division, Zhejiang University of Traditional Chinese Medicine Affiliated with Wenzhou Hospital, Wenzhou 325000, Zhejiang, P. R. China. *Equal contributors.

Received April 3, 2021; Accepted April 12, 2021; Epub June 15, 2021; Published June 30, 2021

In this article published in AJTR, we found that two images were mistakenly mixed, resulting in incorrect images shown in Figure 3. We would like to publish this Erratum to reflect this change. The new figures are as follows. The authors apologize for this mistake.

Address correspondence to: Dr. Mayun Chen, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou 325000, Zhejiang, P. R. China. Tel: +86-18367811833; E-mail: chenmayun@126.com
Astaxanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis

Figure 3. ASX exhibits protective effects against LPS-induced lung injury in LPS-challenged mice. Samples of lung tissue were harvested 20 h after LPS injection. (A) The results show H&E-staining of lung tissue sections from the indicated group. In the lung, alveolar wall thickness and the number of pulmonary alveoli were observed in LPS-challenged mice compared with controls. (B-E) Representative immunohistochemical staining and quantitative analysis for TNF-α (B and C) and CD68 (D and E). The expression of TNF-α and inflammatory cell infiltration were observed in lung tissue samples. The figure is a representative of three independent experiments (n=10, independent experiments, ***P<0.001, vs vehicle; **P<0.01, ###P<0.001, vs LPS).