Original Article
A functional autophagy pathway is essential for BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs)

Xia Zhao1,2, Bo Huang2,3, Hao Wang2,4, Na Ni2,4, Fang He2,5, Qing Liu2,6, Deyao Shi2,7, Connie Chen2, Piao Zhao2,8, Xi Wang2,4, William Wagstaff2, Mikhail Pakvasa2, Andrew Blake Tucker2, Michael J Lee2, Jennifer Moriatis Wolf2, Russell R Reid2,8, Kelly Hynes2, Jason Strelzow2, Sherwin H Ho2, Jian Yang9, Le Shen2,10, Tong-Chuan He2,10, Yongtao Zhang1,2

1Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266061, China; 2Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; 3Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330031, China; 4Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing 400016, China; 5Departments of Medicine/Gastroenterology, Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; 6Departments of Orthopaedic Surgery and Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China; 7Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; 8Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA; 9Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; 10Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA

Received February 21, 2021; Accepted March 15, 2021; Epub May 15, 2021; Published May 30, 2021

Abstract: Mesenchymal stem cells (MSCs) are capable of differentiating into bone, cartilage and adipose tissues. We identified BMP9 as the most potent osteoinductive BMP although detailed mechanism underlying BMP9-regulated osteogenesis of MSCs is indeterminate. Emerging evidence indicates that autophagy plays a critical role in regulating bone homeostasis. We investigated the possible role of autophagy in osteogenic differentiation induced by BMP9. We showed that BMP9 upregulated the expression of multiple autophagy-related genes in MSCs. Autophagy inhibitor chloroquine (CQ) inhibited the osteogenic activity induced by BMP9 in MSCs. While overexpression of ATG5 or ATG7 did not enhance osteogenic activity induced by BMP9, silencing Atg5 expression in MSCs effectively diminished BMP9 osteogenic signaling activity and blocked the expression of the osteogenic regulator Runx2 and the late marker osteopontin induced by BMP9. Stem cell implantation study revealed that silencing Atg5 in MSCs profoundly inhibited ectopic bone regeneration and bone matrix mineralization induced by BMP9. Collectively, our results strongly suggest a functional autophagy pathway may play an essential role in regulating osteogenic differentiation induced by BMP9 in MSCs. Thus, restoration of dysregulated autophagic activity in MSCs may be exploited to treat fracture healing, bone defects or osteoporosis.

Keywords: BMP9, autophagy, mesenchymal stem cells, lineage-specific differentiation, osteogenic signaling, bone formation

Introduction
Mesenchymal stem cells (MSCs) are multipotent progenitors, and they can differentiate into several types of tissues such as bone, cartilage, adipose, and muscle [1-6]. While the exact mechanisms are not fully understood, osteogenic lineage-specific differentiation of MSCs is tightly modulated by multiple major signaling pathways, such as TGF-β/BMP superfamily members, WNT/β-catenin, NOTCH ligands and receptors, and FGFs to name a few [3, 7-18].
Among those osteogenic regulators, BMPs represent a group of the most potent osteogenic factors [19-21]. BMPs are members of TGF-β superfamily [3, 19, 20, 22], and the 14 types of BMPs exist in humans and rodents [19, 20, 23, 24]. We carried out a systematic study, analyzed the osteogenic capability of the 14 human BMPs, and identified the least known BMP9 as the strongest osteogenic BMP in MSCs [19, 21, 25-28]. BMP9, unlike BMP2 and BMP7, is refractory to the inhibitory effect exerted by the potent antagonist noggin [29]. We also showed that TGF-β/BMP-1R ALK1 and ALK2 are critical for transmitting BMP9 osteogenic signaling [30] and subsequently regulating down-stream target genes in MSCs [31-38]. We further demonstrated that noncoding RNAs may play an important role in BMP9-initiated osteogenic signaling [39-41], while we and others revealed that BMP9 can cross-talk with many pathways in regulating osteogenic differentiation [16, 35-37, 42-49]. But, the detailed mechanisms underlying BMP9-induced osteogenesis remain indeterminate.

Emerging evidence indicates that autophagy may play an important role in bone homeostasis [50-52]. As an evolutionarily conserved cytoplasmic membrane-trafficking pathway for shuttling organelles and/or proteins to lysosomes for degradation and recycling, autophagy is considered one of the primary catabolic pathways, in which cells are digested to recover nutrients and energy [50, 53-55]. Autophagy is indispensable for cell homeostasis and stress responses [52]. Multiple proteins involved in autophagy activities, such as autophagy-related (ATG) proteins, are critical to the survival and differentiation of osteoblasts, osteocytes, and osteoclasts [50-52]. As the paradoxical functions of autophagy in maintaining cell homeostasis and stress responses demand a delicate and fine-tuned regulation of autophagic activity, dysregulated autophagic activity may disturb the balance between bone formation and bone resorption, leading to the development and/or progression of bone disorders, such as osteoporosis and Paget’s disease [50-52, 55]. Nonetheless, since autophagy is known to play paradoxical roles in many cellular processes, the exact mechanisms underlying autophagy-regulated bone homeostasis remain to be thoroughly elucidated.

In this study, we studied whether or not the autophagy pathway played any role in osteogenic differentiation induced by BMP9 in MSCs. We showed that BMP9 effectively upregulated the expression of multiple autophagy-related genes (ATGs) in MSCs. Autophagy inhibitor chloroquine (CQ) was shown to significantly inhibit the osteogenic activity induced by BMP9 in MSCs. While an overexpression of ATG5 or ATG7 did not enhance BMP9-induced osteogenic activity, silencing Atg5 in MSCs effectively diminished BMP9 osteogenic signaling activity and blocked the expression of the osteogenic regulator Runx2 and the late marker osteopontin induced by BMP9. In vivo stem cell implantation experiments revealed that silencing Atg5 in MSCs profoundly inhibited ectopic bone formation and bone matrix mineralization induced by BMP9. Collectively, these findings suggest that effective osteogenesis induced by BMP9 may require functional autophagy pathway in MSCs. Therefore, restoration of dysregulated autophagic activity in MSCs may be explored to treat bone fracture healing, bone defects, or osteoporosis.

Material and methods

Chemicals, cell culture and medium

Mouse imBMSCs are reversibly immortalized mouse bone marrow stromal cells previously characterized [56]. HEK-293 cells were obtained from ATCC, while 293pTP and RAPA cells were derived from HEK-293 cells as described [57, 58]. The above cell lines were cultured in DMEM containing 10% FBS, containing penicillin (100 U/ml) and streptomycin (100 µg/ml) at 37°C in 5% CO₂ as described [59-63]. All other chemicals were purchased from Sigma-Aldrich or Thermo Fisher Scientific.

Generation and amplification of adenoviral vectors Ad-BMP9, Ad-ATG5, Ad-ATG7, AdRsimAtg5 and Ad-GFP

We constructed recombinant adenoviruses using the AdEasy system [64-66]. Specifically, the human BMP9, human ATG5, and human ATG7 coding regions were amplified by Hi-Fi PCR, cloned into an adenoviral shuttle vector to produce recombinant adenovirus plasmids and subsequently adenoviruses in packaging cell lines such as 293pTP and RAPA cells [57, 58], yielding Ad-BMP9, Ad-ATG5 and Ad-ATG7, all of
which also co-express GFP as a tracking marker.

For the construction of silencing Atg5 adenoviral vector, three siRNAs silencing the coding region of mouse Atg5 were designed by using Invitrogen's BLOCK-IT RNAi Designer program, simultaneously assembled into our recently-developed FAMSi vector system [67], which was optimized on the basis of our previously-established siRNA expression systems [68-71], and subsequently subcloned into our homemade adenoviral vector as described [17, 37, 72, 73]. Recombinant adenovirus AdR-simAtg5 was generated in 293pTP or RAPA cells. The AdR-simAtg5 co-expresses RFP as a tracking marker. Ad-GFP was used as a control virus as described [70, 74-77]. Polybrene (5 µg/ml) was included in all adenoviral infections to enhance adenoviral infection efficiency as described [78].

RNA purification & touchdown quantitative PCR (TqPCR)

Total RNA was extracted with TRIZOL Reagent and used for reverse transcription reactions using random 6 mers and M-MuLV RT (New England Biolabs, Ipswich, MA). RT products were used as TqPCR templates. TqPCR primers were designed by using Primer3 Plus program (Supplementary Table 1). TqPCR analysis was performed as described [24, 45, 79-82]. Briefly, SYBR Green (Bimake, Houston, TX) qPCR was set up with the following cycling parameters: 95°C × 3' for 1 cycle; 95°C × 20", 66°C × 10" per cycle, then -3°C each cycle for 4 cycles; followed by 95°C × 10", 55°C × 15", and 70°C × 1' for 40 cycles. All reactions were normalized with the expression level of reference gene Gapdh. The 2^-ΔΔCt method was used to determine relative gene expression.

Determination of alkaline phosphatase (ALP) activity

Different adenoviruses were used to infect subconfluent imBMSCs. At the indicated time points (usually 2, 4, 6 days after infection), the Great Escape SEAP Chemiluminescence Assay was used to quantitatively assess ALP activities as previously described [37, 83-85]. Each assay condition was conducted in triplicate.

Ectopic bone formation

The use and care of animals was approved by the Institutional Animal Care and Use Committee. Subcutaneous injection procedure was conducted as described [83, 88, 90-96]. Experimentally, subconfluent imBMSCs were co-infected with appropriate combinations of adenoviruses for 36 h, harvested, resuspended in sterile PBS/PPCN scaffold material mix (~5 × 10^6 cells in 50 µl/injection), and subcutaneously injected into the flanks of nude mice (Envigo; n=4/group, female, 6-wk-old). At 5 wk after injection, the animals were euthanized for harvesting the bony masses.

MicroCT (μCT) imaging and data analysis

Retrieved bony masses were fixed in 10% PBS-buffered formalin and imaged by using the μCT component of the GE triumph trimodality imaging system. The acquired imaging data were analyzed using Amira 6.0 (Visage Imaging, Inc.) as previously described [35, 49, 97, 98].

Histologic evaluation and Masson’s trichrome staining

The above fixed masses were subjected to decalcification and paraffin embedding. 5 µm sections were used for H&E histologic evaluation and Masson’s trichrome staining as previously reported [96, 99-103].
Autophagy participates in BMP9-induced osteogenesis

Figure 1. BMP9 upregulates the expression of multiple autophagy genes in MSCs. Subconfluent MSCs were infected with Ad-BMP9 or Ad-GFP. Total RNA was isolated at 1 day (A), 3 days (B) and 5 days (C) after infection, and subjected to RT-qPCR analysis of the expression of major regulators of the autophagy pathway. Relative expression was calculated as fold changes over Ad-GFP infected cells (dotted lines). **p<0.05, ***p<0.01, compared with that of the Ad-GFP group for respective genes.

Statistical analysis

We performed all quantitative studies in triplicate. The statistical comparison of the means between two groups was determined by Student’s t test. The P<0.05 was cutoff for statistical significance.

Results

BMP9 can upregulate the expression of multiple autophagy genes in MSCs

To determine whether or not autophagy plays any role in osteogenic differentiation induced by BMP9 in MSCs, we first analyzed if BMP9 would affect the expression of 13 of the important genes in the autophagy pathway. When subconfluent imBMSCs were transduced with Ad-BMP9 or Ad-GFP control adenovirus, eight of the tested 13 genes were upregulated by BMP9 at 24 h post infection (Figure 1A), while BMP9 upregulated all 13 genes at 72 h after infection (Figure 1B). Even at 5 days after infection, BMP9 upregulated the expression of 12 of the 13 tested genes in the autophagy pathway (Figure 1C). Similar results were obtained in other types of MSCs stimulated with BMP9 (data not shown). Our results demonstrate that BMP9 can upregulate multiple autophagy genes in MSCs, especially Atg3, Atg5, Atg7, Atg8, Atg9a, Atg10, Atg14, Atg101, Fip200, and Ulk, suggesting that autophagy may play an important role in osteogenic differentiation induced by BMP9 in MSCs.

Autophagy blockade effectively inhibits ALP activity and matrix mineralization induced by BMP9 in MSCs

We next tested the effect of autophagy inhibition on osteogenic differentiation stimulated by BMP9 in MSCs. Even though chloroquine (CQ) has been widely used as an autophagy inhibitor in cancer cells, it was not well established what the optimal non-lethal concentrations of CQ are for MSCs. When imBMSCs were treated with a broad range of CQ (0 to 80 µM), we found that 40 µM CQ caused drastic cytotoxicity and cell death, while imBMSC cells were apparently healthy when CQ concentration was lower than 20 µM (Supplementary Figure 1A). Furthermore, no significant cytotoxicity was observed in the imBMSC cells that were infected with Ad-BMP9 or Ad-GFP, and/or treated with up to 10 µM CQ (Supplementary Figure 1Ba, 1Bb). Thus, we chose the maximal concentration of 10 µM CQ in our experiments.

When imBMSCs were infected with Ad-BMP9 or Ad-GFP, and treated with different concentra-
Figure 2. Autophagy blockade leads to the inhibition of BMP9-induced ALP activity and matrix mineralization in MSCs. (A, B) Autophagy inhibitor chloroquine (CQ) suppresses BMP9-induced ALP activity. Subconfluent MSCs were infected with Ad-BMP9 or Ad-GFP, and treated with the indicated concentrations of CQ. At 4 days and 6 days after infection, ALP activity was stained histochemically and representative results are shown (A). Quantitative ALP assay
was also carried out at 2, 4, and 6 days after infection (B). “**” P<0.01, compared with that of the “Ad-BMP9+0 µM CQ” group. (C, D) Autophagy inhibitor chloroquine (CQ) diminishes BMP9-induced matrix mineralization. Subconfluent MSCs were infected with Ad-BMP9 or Ad-GFP, and treated with the indicated concentrations of CQ. At 10 days and 17 days after infection, the cells were fixed and stained with Alizarin Red staining, and representative results are shown (C). The Alizarin Red stains were dissolved and quantitatively measured (D). “**” P<0.01, compared with that of the “Ad-BMP9+0 µM CQ” group.

Tions of CQ, we found that ALP activity induced by BMP9 was inhibited in a dose-dependent manner at both day 4 and day 6, respectively (Figure 2A). Quantitative ALP activity analysis also confirmed that ALP activity stimulated by BMP9 was significantly suppressed by CQ at 2, 4, and 6 days after infection in a dose-dependent fashion (Figure 2A). Alizarin Red S staining assay indicates that matrix mineralization induced by BMP9 was effectively inhibited by CQ in a dose-dependent fashion at both day 10 and day 17, respectively (Figure 2Ca, 2Cb), which was further confirmed by the quantitative measurements of the stained mineral nodules (Figure 2D). Collectively, these findings suggest autophagy blockade may significantly diminish BMP9-induced osteogenesis of MSCs.

Silencing Atg5 expression effectively blunts the ALP activity and matrix mineralization induced by BMP9 in MSCs

We further analyzed the effect of overexpression or silencing of autophagy genes (e.g., Atg5 and Atg7) on osteogenic differentiation induced by BMP9 in MSCs. In order to effectively overexpress autophagy genes, we engineered recombinant adenoviral vectors Ad-ATG5 and Ad-ATG7, both of which were shown to effectively transduce imBMSC cells, and could be used to co-infected imBMSC cells with Ad-BMP9 (Supplementary Figure 2A, 2B). For silencing Atg5 expression in imBMSCs, we also constructed AdR-simAtg5 adenoviral vector, and showed the imBMSC cells were readily transduced by AdR-simAtg5 alone, or with Ad-BMP9 (Supplementary Figure 2C). We further demonstrated that Atg5 expression in imBMSC cells was effectively silenced by AdR-simAtg5 adenoviral vector (Supplementary Figure 2D).

When imBMSCs were co-infected with Ad-BMP9 and Ad-ATG5, we found that ALP activity stimulated by BMP9 was not significantly enhanced by ATG5 overexpression at the tested time points (Figure 3Aa, 3Ab). Similarly, overexpression of ATG7 in imBMSC cells did not significantly impact BMP9-stimulated ALP activity (Figure 3Ba, 3Bb). We further investigated the effect of ATG5 overexpression on late stage of osteogenesis induced by BMP9 and found that exogenous expression of ATG5 in imBMSCs did not significantly enhance matrix mineralization induced by BMP9 as determined by Alizarin Red S staining (Figure 3Ca, 3Cb). Similar results were obtained in the imBMSC cells co-infected with Ad-ATG7 and Ad-BMP9, and no increase in Alizarin Red S staining was observed (Figure 3Da, 3Db). These results indicate that exogenous expression of autophagy genes seemingly does not affect osteogenic differentiation induced by BMP9 in MSCs.

However, silencing Atg5 in imBMSC cells effectively diminished ALP activity induced by BMP9 at 4 days and 6 days after infection (Figure 4Aa, 4Ab). Quantitative analysis confirmed that ALP activity stimulated by BMP9 was inhibited in the AdR-simAtg5 infected cells at 2, 4, and 6 days after infection (Figure 4B). Accordingly, silencing Atg5 led to a marked decrease in Alizarin Red S staining induced by BMP9 at 10 days and 17 days after infection (Figure 4Ca, 4Cb), which was readily supported by the quantitative analysis of the stained mineral nodules (Figure 4Cc). Collectively, these findings suggest that a functional autophagy pathway may be critical to osteogenic differentiation induced by BMP9 in MSCs, consistent with the inhibitory effect exerted by CQ blockade as shown in Figure 2.

To elucidate potential mechanism underlying the effect of overexpressing or silencing autophagy genes in MSCs, we co-infected imBMSCs with Ad-BMP9 and/or Ad-ATG5, Ad-ATG7, or AdR-simAtg5 for 3 days, and analyzed the expression of the master osteogenic regulator Runx2 and the late osteogenic marker osteopontin (Opn) by qPCR. We found that overexpression of ATG5 or ATG7 did not significantly affect expression of Runx2 and Opn up-regulated by BMP9 (Figure 5A, 5B). However, silencing Atg5 in imBMSC cells significantly diminished the expression of Runx2 and Opn induced by BMP9 (Figure 5C). Taken together, the above findings are consistent with the hypothesis that functional autophagy pathway plays an impor-
Autophagy participates in BMP9-induced osteogenesis

Silencing Atg5 inhibits ectopic bone formation induced by BMP9 in MSCs

Lastly, we examined the effect of overexpressing or silencing autophagy genes on in vivo bone formation induced by BMP9. When imBM-SCs were co-infected with combinations of Ad-GFP or Ad-BMP9, with Ad-ATG5, Ad-ATG7, or AdR-simAtg5, and implanted into the flanks of nude mice for 5 weeks. No retrievable masses were found in the Ad-GFP control, Ad-ATG5 only, Ad-ATG7 only, and AdR-simAtg5 only groups. Apparent masses were readily retrieved from

Figure 3. Exogenous expression of ATG5 or ATG7 does not affect BMP9-induced osteogenic differentiation in MSCs.

(A, B) Exogenous expression of ATG5 or ATG7 does not affect BMP9-induced ALP activity. Subconfluent MSCs were infected with Ad-GFP, Ad-BMP9, and/or Ad-ATG5 (A), and/or Ad-ATG7 (B). ALP activity was qualitatively assessed with histochemical staining at 4 and 6 days after infection (a), or was quantitatively determined at 2, 4, and 6 days after infection (b). Representative results are shown. (C, D) Exogenous expression of ATG5 or ATG7 does not affect BMP9-induced matrix mineralization. Subconfluent MSCs were infected with Ad-GFP, Ad-BMP9, and/or Ad-ATG5 (C), and/or Ad-ATG7 (D). Alizarin Red staining was carried out at 10 and 17 days after infection (a), followed by dissolving the stains for quantitative absorbance measurement (b). Representative results are shown.
Autophagy participates in BMP9-induced osteogenesis

Figure 4. Silencing ATG5 significantly diminishes BMP9-induced ALP activity and matrix mineralization in MSCs. (A, B) Silencing Atg5 inhibits BMP9-induced ALP activity. Subconfluent MSCs were infected with Ad-GFP, Ad-BMP9, and/or AdR-simAtg5. ALP activity was qualitatively assessed with histochemical staining at 4 days (a) and 6 days (b) after infection, or was quantitatively determined at 2, 4, and 6 days after infection (B). Representative results are shown. ** P<0.01, compared with that of the Ad-BMP9 group. (C) Silencing Atg5 inhibits BMP9-induced matrix mineral
Autophagy participates in BMP9-induced osteogenesis

BMP9+ATG5, BMP9+ATG7, BMP9 only, and BMP9+simAtg5 groups, where the average gross sizes (Figure 6Aa) and micro-CT 3D reconstructed images (Figure 6Ab) indicated that the bony masses retrieved from the BMP9+simAtg5 group were noticeably smaller than that from the BMP9 alone group, although masses from the ATG5 or ATG7 overexpression group had roughly similar sizes to that of the BMP9 alone group (Figure 6Aa, 6Ab). The micro-CT data were quantitatively analyzed and confirmed that silencing Atg5 inhibited the average bone volume of the ectopic bone masses induced by BMP9 (Figure 6Ac).

Histologic analysis revealed that the masses retrieved from BMP9 alone, BMP9+ATG5, BMP9+ATG7 groups exhibited similar bone histology with abundance of mature trabecular bone, whereas the BMP9+simAtg5 group lacked significant trabecular bone structure and only displayed immature osteoid matrix-like structure (Figure 6Ba). Trichrome staining also revealed that the masses retrieved from the BMP9 alone, BMP9+ATG5, BMP9+ATG7 groups contained abundant highly mineralized mature bone matrix, while the BMP9+simAtg5 group only exhibited immature osteoid matrix structure (Figure 6Bb). These findings further validate the in vitro results and strongly suggest that a functional autophagy pathway may play an essential role in mediating osteogenesis induced by BMP9 in MSCs.

Discussion

Through a systematic analysis of the osteogenic activities of 14 human BMPs, we identified BMP9 as one of the most potent osteoinductive BMPs [19, 21, 25, 26, 28]. Furthermore, we demonstrated that BMP9 also induces adipogenic and chondrogenic differentiation in MSCs [19, 21, 28, 86]. Subsequently, we demonstrated that BMP9 binds to ALK1/2 type I receptors and regulates a panel of downstream target genes and noncoding RNAs, as well as cross-talking with several signaling pathways in MSCs [16, 18, 20, 31-37, 40, 41, 43-45, 104, 105]. Nonetheless, the exact mechanism underlying BMP9-regulated osteogenic differentiation of MSCs remains to be fully understood.

Emerging evidence indicates that autophagy may play critical roles in cell homeostasis and stress responses, including bone homeostasis.
Autophagy participates in BMP9-induced osteogenesis

In this study, we investigated whether or not autophagy plays any role in BMP9-induced osteogenic signaling. We found that autophagy blockade with chloroquine or silencing Atg5 effectively blocked BMP9-induced osteogenic differentiation of MSCs in vitro and in vivo, whereas overexpression of ATG5 or ATG7 did not enhance BMP9-induced osteogenic differentiation in MSCs. Our findings suggest that the basal autophagic activity may be sufficient for normal BMP9 osteogenic signaling, but a blockade of autophagic activity may effectively blunt BMP9 osteogenic signaling in MSCs. These findings should be consistent with the fact that paradoxical roles of autophagy in maintaining cell homeostasis and stress responses mandate a balanced autophagic activity in MSCs.

It was reported that autophagosomes were shown to accumulate in the stem state of MSCs and deliver them to lysosomes once differentiation was initiated [106], and more differentiated osteocytes exhibited higher levels of autophagic flux [107]. Accordingly, osteocyte-specific suppression of autophagy was shown to mimic the skeletal aging phenotype [108]. Mice lacking Atg7 in osteoblasts had low bone mass and fractures, and were associated with reductions of both osteoclast and osteoblast numbers [109], further confirming that autophagy in osteoblasts may contribute to skeletal homeostasis. However, inhibition of autophagy in osteocytes did not reverse the glucocorticoids’ adverse impact on cortical bone [110]. It was reported that Atg5 and Atg7 in mononuclear osteoclast progenitors were required for appropriate localization of lysosomes within the actin ring, as well as for the pit formation during bone resorption, although they were not required for osteoclastogenesis and osteoclast maturation [111]. Furthermore, cartilage-specific knockout of Atg7 in mice led to reduced chondrocyte proliferation and differentiation.

Figure 6. Silencing ATG5 inhibits BMP9-induced ectopic bone formation from MSCs. (A) Subconfluent MSCs were infected with Ad-GFP, Ad-BMP9, and/or Ad-ATG5, Ad-ATG7, or AdR-simAtg5 for 30 h, and collected for subcutaneous injection into the flanks of athymic nude mice. At 5 weeks, bony masses were harvested (Aa) and subjected to microCT imaging (Ab). No mass was recovered from the Ad-GFP control, Ad-ATG5 only, Ad-ATG7 only, and AdR-simAtg5 only groups. Representative images are shown. Micro-CT imaging data were used to calculate the average bone volume (Ac). **P<0.01, compared with that of the Ad-BMP9 group. (B) The retrieved masses were decalcified, paraffin-embedded, and subjected to H, E staining (a) and trichrome staining (b). Representative images are shown.
Autophagy participates in BMP9-induced osteogenesis

and increased chondrocyte apoptosis [112], consistent with the fact that autophagy is generally considered to be an important cell survival pathway.

In summary, we investigated if autophagy plays any role in BMP9-induced osteogenic signaling in MSCs. We found that autophagy blockade with chloroquine or silencing Atg5 expression significantly diminished BMP9-induced osteogenic differentiation of MSCs both in vitro and in vivo, whereas overexpression of ATG5 or ATG7 did not enhance BMP9-induced osteogenic differentiation under the same conditions. Collectively, our findings strongly suggest that a functional autophagy pathway may play an essential role in mediating BMP9-induced osteogenesis of MSCs. Thus, it is conceivable that restoration of dysregulated autophagic activity in MSCs through a controlled delivery of BMP9 may be explored as a therapeutic strategy to treat bone fracture healing, bone defects, or osteoporosis.

Acknowledgements

The authors wish to thank Dr. Aaron Hsiu-Ming Tsai of the Integrated Small Animal Imaging Research Resource (iSAIRR) Faculty at The University of Chicago, for his valuable and resourceful support. The reported work was supported in part by research grants from the National Institutes of Health (CA226303 to TCH, DE030480 to RRR, and AR072731 to JY), the Chicago Biomedical Consortium with support from the Searle Funds at The Chicago Community Trust (RRR), and the Scoliosis Research Society (TCH and MJL). WW was supported by the Medical Scientist Training Program of the National Institutes of Health (T32 GM007281). This project was also supported in part by The University of Chicago Cancer Center Support Grant (P30CA014599) and the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) through Grant Number 5UL1TR002389-04 that funds the Institute for Translational Medicine (ITM). SHH and TCH were grateful for the support from the SHOCK Fund at The University of Chicago. TCH and MJL were supported by the Mabel Green Myers Research Endowment Fund and The University of Chicago Orthopaedics Alumni Fund. Funding sources were not involved in the study design; in the collection, analysis and/or interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Tong-Chuan He, Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA. Tel: 773-702-7169; Fax: 773-834-4598; E-mail: tche@uchicago.edu; Dr. Yongtao Zhang, Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Jiangsu Road #16, Shinan District, Qingdao 266061, China. Tel: +86-532-82913558; Fax: +86-532-82913558; E-mail: drzhang215@163.com

References

Autophagy participates in BMP9-induced osteogenesis

2445

[38] Si W, Kang Q, Luu HH, Park JK, Luo Q, Song WX, Jiang W, Luo X, Li X, Yin H, Montag AG, Haydon RC and He TC. CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol 2006; 26: 2955-2964.

Autophagy participates in BMP9-induced osteogenesis

cells (MSCs) by antagonizing Notch-targeting microRNAs. Aging (Albany NY) 2019; 11: 12476-12496.

Autophagy participates in BMP9-induced osteogenesis

Autophagy participates in BMP9-induced osteogenesis

the essential role of bone morphogenetic protein 9 (BMP9) in osteogenic differentiation of mesenchymal stem cells (MSCs) through RNA interference. Genes Dis 2018; 5: 172-184.

Autophagy participates in BMP9-induced osteogenesis

Autophagy participates in BMP9-induced osteogenesis

Autophagy participates in BMP9-induced osteogenesis

Supplementary Table 1. List of oligonucleotides used in the study

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence</th>
<th>Accession No.</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulk1</td>
<td>TGGTGTCACTGCAGAGCG</td>
<td>NM_009469.3</td>
<td>qPCR</td>
</tr>
<tr>
<td></td>
<td>CCGTGAGAGTGTTGCTGCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fip200</td>
<td>AGGACCGAGCTCGTTTGC</td>
<td>NM_009826</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAGAGCTCTGGGGCTGCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg3</td>
<td>GCCCTATGCGTGCTCCAG</td>
<td>NM_026402.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCCCCTAGCCCATGTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg5</td>
<td>GGACAAAGCGAGCGTGACA</td>
<td>NM_053069.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAGGGTCACTGGCTTGCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg6</td>
<td>GTGGGGAAAGACACCGGG</td>
<td>NM_019584</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTCCACGTGCGACACAGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg7</td>
<td>CGGAGTGTCAGTGAGGGCA</td>
<td>NM_028835.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATCTCCTGGACCCTAGGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg8</td>
<td>GGCGGAGACTGGCTGTG</td>
<td>NM_026160.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACTTGGTGGGGCTGCG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg9a</td>
<td>CCCTGCTCTATCTCTGG</td>
<td>NM_026160.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGGGCCAGAACACCATG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg9b</td>
<td>TGCCCCCTCGCAGAAGAG</td>
<td>NM_001002897.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTTGAGGGTGTTGCTGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg10</td>
<td>GCCTGCTGGGCTGGGAATGG</td>
<td>NM_025770.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCACTTCTGGCCGGCTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg12</td>
<td>TCCTGCGTGCACTGTGCC</td>
<td>NM_026217.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GTTGCCTCACAGCCCAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg14</td>
<td>TACATATCGCCGGGCGG</td>
<td>NM_172599.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCGCCACAAGACTGGCTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg101</td>
<td>CAGGTGTGATGCGGCCTGG</td>
<td>NM_026566.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCAAGGCTACCACTGCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runx2</td>
<td>CGGTCCTCCTCCAGGAT</td>
<td>NM_001146038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GGGAACTGCTGAGGGCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocn</td>
<td>CCTCCCGGTAAGAGTGC</td>
<td>NM_001204201.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTTGGGCGCAAGAGATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gapdh</td>
<td>ACCCGAGAAGACTGGGGATGG</td>
<td>NM_008084.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CACATGCTGGAGGAACAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATG5</td>
<td>accaccatgggccATGACAGATGACAAAGATGCTTCC</td>
<td>NM_004849.3</td>
<td>over expression</td>
</tr>
<tr>
<td></td>
<td>TCAATCTGGTGGCTGGGATGACAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATG7</td>
<td>accaccATGCGGCAGCTAGGGGGGATCCTGG</td>
<td>NM_001136031.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCAGATGGCTCTATCATCGGCTCAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atg5</td>
<td>aaaaaGCTTCTGAGATGTGGTTTTGATAGGAGTCTG</td>
<td>NM_053069</td>
<td>siRNAs</td>
</tr>
<tr>
<td></td>
<td>GgtGTCTGCGggccaaaaaaaGCTTCTGAGATGTGGTTTT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aaaaAAAGTGACCTCAACCCTTttttTTCTGCTTTTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ggtGTTCTGCGgctttAAAAAAATAAGTGAGCCCTCA ACCGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aaaaATGAGTTTCCGGTTGATGtttttTTCTGCTTTTT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ggtGTTCTGCGccaaaaaaaATGAGTTTCCGGTTGAGT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Figure 1. Determination of sub-lethal and optimal concentrations of chloroquine (CQ) in MSCs. (A) Subconfluent MSCs were treated with the indicated concentrations of CQ and photographed at 72 h after treatment. Representative images are shown. (B) Subconfluent MSCs were infected with Ad-GFP or Ad-BMP9 and treated with CQ at the indicated concentrations. Bright field images (a) and GFP signal (b) were recorded at 48 h post infection/treatment. Representative images are shown.
Supplementary Figure 2. Characterization of the recombinant adenoviral vectors used in the study. (A, B) Efficient co-transduction of MSCs using BMP and Ad-ATG5 or Ad-ATG7 viral vectors. Subconfluent MSCs were infected with Ad-GFP, Ad-BMP9 and/or Ad-ATG5 (A) or Ad-ATG7 (B), and GFP signal was recorded at 48 h after infection. Representative images are shown. (C) Co-infection efficiency of AdR-simAtg5. Subconfluent MSCs were infected with Ad-GFP, Ad-BMP9 and/or AdR-simAtg5, and GFP or RFP signal was recorded at 48 h after infection. Representative images are shown. (D) Silencing efficiency of AdR-simAtg5. Subconfluent MSCs were infected with Ad-GFP, or AdR-simAtg5. At 72 h after infection, total RNA was isolated and subjected to RT-PCR analysis of Atg5 expression. “**” P<0.01, compared with that of the Ad-GFP control group.