Clinical efficacy of ceftazidime combined with levofloxacin on heart failure complicated with pulmonary infection and its influence on cardiopulmonary function

Rong Yang1*, Yuou Li2*, Jinliang Li3, Limin Xing4, Li Liu5

1Department of Fundamental Medicine, Hubei College of Chinese Medicine, Jingzhou 434020, Hubei Province, China; 2Department of Outpatient, Harbin Sixth Hospital, Harbin 150040, Heilongjiang Province, China; 3Department of General Internal Medicine, Harbin Sixth Hospital, Harbin 150040, Heilongjiang Province, China; 4Department of Nursing, Xiangyang No. 1 People’s Hospital Affiliated to Hubei University of Medicine, Xiangyang 441000, Hubei Province, China; 5Department of Cardiothoracic Surgery, Xiangyang No. 1 People’s Hospital Affiliated to Hubei University of Medicine, Xiangyang 441000, Hubei Province, China. *Equal contributors and co-first authors.

Received October 10, 2020; Accepted November 27, 2020; Epub April 15, 2021; Published April 30, 2021

Abstract: Objective: This study was designed to analyze the clinical efficacy of ceftazidime combined with levofloxacin on heart failure complicated with pulmonary infection and its influence on cardiopulmonary function. Methods: A total of 124 patients with heart failure and pulmonary infection admitted to our hospital from June 2018 to October 2019 were divided into groups according to different treatment schemes. Thereinto, 60 patients who were given ceftazidime intravenous drip on the basis of routine treatment were included in group A, and 64 who were given levofloxacin hydrochloride injection based on intravenous drip in group B. The clinical efficacy, cardiac and lung function, pathogenic bacteria, infection, immune indexes and adverse reactions before and after treatment were compared. Results: After treatment, the adjusted levels of LVEF, LVEDD and LA in group B after treatment were greater than those in group A (P<0.05); the levels of MMV, TLC and FEV1 in group B were increased more than those in group A (P<0.05). After treatment, the levels of BNP, PCT and CRP in groups A and B decreased compared with those before treatment (P<0.05). Furthermore, the down-regulated levels of BNP, PCT and CRP in group B were higher than those in group A after treatment (P<0.05). After treatment, the levels of serum CD3+, CD4+, CD4+/CD8+ in group B increased more and CD8+ decreased more. The clinical efficacy of group B after 7 days was higher than that of group A (P<0.01). Patients were followed up for one month, and there was no marked difference in their adverse drug reaction rates (P>0.05). Conclusion: To sum up, ceftazidime combined with levofloxacin on patients with heart failure and pulmonary infection can improve the immune function while optimizing the clinical efficacy and cardiopulmonary function.

Keywords: Ceftazidime, levofloxacin, heart failure, pulmonary infection, cardiopulmonary function

Introduction

Heart failure, as a common disease, is the familiar clinical manifestation of most organic heart diseases from progression to the end stage [1-4]. Patients with heart failure are often accompanied with secondary diseases such as pulmonary circulation congestion and edema, which create certain conditions for pathogenic bacteria to invade [5, 6]. Therefore, the risk of pulmonary infection in patients with heart failure is relatively high. While the population is aging more and more seriously, the morbidity of pulmonary infection in patients with heart failure is increasing year by year [7, 8]. It is therefore, a unique challenge to achieve effective and safe anti-pathogenic bacteria infection in patients with heart failure and pulmonary infection [9, 10]. Timely and effective infection control and anti-inflammatory treatment is vital to improve the prognosis of patients with heart failure and pulmonary infection. After pulmonary infection control, heart failure can be partially improved [11].

At present, ceftazidime combined with levofloxacin is often used to treat patients with pulmonary infection [12-14]. Ceftazidime, as the third
Effects of ceftazidime combined with levofloxacin of patients

Table 1. General data

<table>
<thead>
<tr>
<th>Group</th>
<th>Group A (60)</th>
<th>Group B (64)</th>
<th>X²/t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>61.52±4.65</td>
<td>63.13±4.46</td>
<td>1.968</td>
<td>0.051</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td>0.055</td>
<td>0.815</td>
</tr>
<tr>
<td>Male</td>
<td>25 (41.67)</td>
<td>28 (43.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>35 (58.33)</td>
<td>36 (56.25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Yes</td>
<td>60 (100.00)</td>
<td>64 (100.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td>0.022</td>
<td>0.882</td>
</tr>
<tr>
<td>Yes</td>
<td>51 (85.00)</td>
<td>55 (85.94)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>9 (15.00)</td>
<td>9 (14.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYHA classification</td>
<td></td>
<td></td>
<td>0.342</td>
<td>0.843</td>
</tr>
<tr>
<td>II</td>
<td>15 (25.00)</td>
<td>19 (29.69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>28 (46.67)</td>
<td>28 (43.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>17 (28.33)</td>
<td>17 (26.56)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Types of infectious pathogens

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Group A</th>
<th>Group B</th>
<th>X²/t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-negative bacteria</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>14</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gram-positive bacteria</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>18</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other pathogenic bacteria</td>
<td>13</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Materials and methods

General data

A total of 124 patients with heart failure and pulmonary infection admitted into our hospital from June 2018 to October 2019 were selected and divided into groups according to different treatment schemes. Among them, 60 who were given ceftazidime intravenous drip on the basis of routine treatment were included in group A, and 64 who were given levofloxacin hydrochloride injection based on intravenous drip in group A were included in group B. Patients in group A ranged in age from 50 to 82 years, with an average age of (61.52±4.65) years. While those in group B ranged in age from 50 to 81 years, with an average age of (63.13±4.46) years. Exclusion and inclusion criteria: All the patients in our hospital were those with heart failure and pulmonary infection who were hospitalized for surgery within 12 h, and all of them met the diagnostic criteria of heart failure complicated with pulmonary infection [21]. All cases were excluded from pregnancy, lactation, tumors in other parts of the body, liver and kidney insufficiency or dysfunction, emphysema, pulmonary tuberculosis and other lung-related diseases, as well as incomplete clinical data and loss of follow-up. This study has been approved by the Medical Ethics Committee, and all the subjects have been informed. They all agreed to participate in clinical research, and have signed the full informed consent form (Table 1).

Treatment methods and grouping

Patients in groups A and B were given routine treatment such as monitoring vital signs and maintaining electrolyte balance. On the basis of routine treatment, patients in group A were given ceftazidime (Guangdong Bozhou Pharmaceutical Co., Ltd.) 2.0 g + 100 mL 0.9% sodium chloride injection every 12 h.

Patients in group B were given levofloxacin hydrochloride injection (Hunan Kelun Pharmaceutical Co., Ltd.) 4.0 g + 100 mL 0.5% glucose injection every 24 h based on intravenous drip in group A.

Outcome measures

The clinical efficacy of patients after 7 days of medication were compared [22] (the clinical
Effects of ceftazidime combined with levofloxacin of patients

Figure 1. Echocardiogram results. A: LVEF (%) level of patients in groups A and B; B: LVEDD (l/mm) level of patients in groups A and B; C: LA (l/mm) level of patients in groups A and B; a means P<0.05.

efficacy was evaluated as markedly effective, effective and ineffective in view of the international guidelines for the diagnosis and treatment of heart failure; total effective rate = (markedly effective cases + effective cases)/total cases×100%). The changes of cardiac function were compared [left ventricular ejection fraction (LVEF), left ventricular end diastolic diameter (LVEDD) and left atrial diameter (LA)] measured by echocardiogram between both groups. The lung function [the maximum minute ventilation (MMV), total lung capacity (TLC) and forced expiratory volume in 1 second (FEV1)] was measured by MSA99 lung function instrument of Maibang, Beijing. The pathogenic bacteria of patients in both groups before and after treatment were observed. The infection [serum levels of brain natriuretic peptide (BNP), procalcitonin (PCT) and C-reactive protein (CRP)] and immune indexes (CD3+, CD4+, CD8+, CD4+/CD8+) were compared before and after treatment. The adverse reactions of patients were compared one month after treatment.

Statistical methods

SPSS 20.0 was used for analysis (Shanghai Cabit Information Technology Co., Ltd.). The counting data were assessed by Chi-square test, and the measurement data were analyzed by T test. The comparison before and after treatment was evaluated by paired T test. P<0.05 was statistically remarkable.

Results

General clinical data of patients in groups A and B

Comparing the general clinical data of the two groups of patients, the difference was not statistically significant (P>0.05).

Cardiac function and lung function of patients in groups A and B

(1) Cardiac function of patients in groups A and B: The LVEF, LVEDD and LA levels of patients in both groups were measured by echocardiogram: The levels of LVEDD and LA decreased after treatment compared with those before treatment, but LVEF was up-regulated (P<0.05). The adjustment range of LVEF, LVEDD and LA in group B after treatment was greater than that in group A. (P<0.05) (Figure 1).

(2) Lung function of patients in groups A and B: The results showed that the levels of MMV, TLC and FEV1 in both groups were all up-regulated after treatment (P<0.05). In addition, MMV, TLC and FEV1 in group B were increased more than those in group A (P<0.05) (Figure 2).

Pathogens of patients in groups A and B before and after treatment

The results of bacterial culture showed that the clearance rate of pathogenic bacteria in group
Effects of ceftazidime combined with levofloxacin of patients

Figure 2. Results of lung function. A: MMV (L) level of patients in groups A and B; B: TLC (L) level of patients in groups A and B; C: FEV1 (L) level of patients in groups A and B; a means P<0.05.

Figure 3. Pathogens. After treatment, the number of pathogenic bacteria in group B was obviously less than that in group A; a means P<0.05.

A was 46.84% (37/79), and that in group B was 79.27% (65/82). The rate of pathogenic bacteria in group B was higher than that in group A (P<0.05) (Figure 3).

Levels of infection and immune indexes of patients in groups A and B before and after treatment

(1) Serum infection index level: The levels of BNP, PCT and CRP in patients of both groups were detected: The levels of BNP, PCT and CRP decreased after treatment compared with those before treatment (P<0.05). Furthermore, the down-regulated levels of the three in group B were higher than those in group A after treatment (P<0.05) (Figure 4).

(2) Serum immune index level: Serum CD3\(^+\), CD4\(^+\), CD8\(^-\), CD4\(^+\)/CD8\(^-\) levels were measured by flow cytometry. The results showed that the levels of CD3\(^+\), CD4\(^+\), CD4\(^+\)/CD8\(^-\) of patients in groups A and B were higher than those before treatment (P<0.05), while CD8\(^-\) decreased. However, after treatment, the levels of serum CD3\(^+\), CD4\(^-\), CD4\(^+\)/CD8\(^-\) in group B increased more and CD8\(^-\) decreased more, but the difference was not statistically significant (Figure 5).

Clinical efficacy and adverse reactions after 7 days of medication

(1) Clinical efficacy: The clinical efficacy of group B after 7 days was 85.00%, which was higher than that of group A (98.44%, P<0.01) (Table 2).
Patients with heart failure are often accompanied with various serious complications due to the decrease of cellular immune function [23, 24]. T-lymphocyte subsets can resist infection and play an important role in protecting individual cellular immune function, while low CD8+ level can promote immune balance and stress injury [25, 26]. According to the treatment plan of heart failure complicated with pulmonary infection, this study analyzed...

**Table 2. Clinical efficacy**

<table>
<thead>
<tr>
<th>Group</th>
<th>Group A (60)</th>
<th>Group B (64)</th>
<th>$X^2$</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective</td>
<td>19 (31.67)</td>
<td>20 (31.25)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Markedly effective</td>
<td>32 (53.33)</td>
<td>43 (68.25)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ineffective</td>
<td>9 (15.00)</td>
<td>1 (1.56)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total effective rate</td>
<td>51 (85.00)</td>
<td>63 (98.44)</td>
<td>7.542</td>
<td>0.006</td>
</tr>
</tbody>
</table>

(2) Adverse reactions: Patients were followed up for one month, and there was no marked difference in adverse drug reaction rates between both groups ($P>0.05$) (Table 3).
levofloxacin reduced the level of inflammatory factors in elderly patients with acute exacerbation of chronic obstructive pulmonary disease complicated with pulmonary infection, decreased the inflammatory stimulus, inhibited the activity of pathogenic bacteria and optimized the lung function [31].

Finally, the levels of serum BNP, PCT, CRP and immune indexes before and after treatment were analyzed. The consumption of heart failure disease itself makes the patient’s immune system disorganized, and the immune function of the body decline [32, 33]; It has been reported that pulmonary infection in patients with heart failure can obviously aggravate the immune dysfunction and further aggravate the abnormal situation of organism function [34, 35]. The serum immune indexes measured by flow cytometry showed that the levels of CD3+, CD4+, CD4+/CD8+ increased and CD8+ decreased after treatment. However, after treatment, the serum CD3+, CD4+, CD4+/CD8+ levels in group B increased more and CD8+ levels decreased more. A large number of studies have confirmed that levofloxacin has strong penetrability and high concentration in lung, which can improve blood oxygen level and inhibit lung infection at the same time, and optimize the effect of improving patients’ immunological indexes [36]. We believe that ceftazidime combined with levofloxacin has a better effect on improving the immune function of T cell subsets. The levels of BNP, PCT and CRP decreased after treatment compared with those before treatment. Furthermore, the down-regulated levels of BNP, PCT and CRP in patients treated by ceftazidime combined with levofloxacin were greater than those in patients treated with ceftazidime alone. Cardiac function and the prognosis of patients with heart failure are assessed by detecting the levels of BNP, PCT and CRP [37]: The increase of heart volume and pressure load in patients with heart failure can lead to enhanced expression of BNP in atrial and ventricular myocytes, which reflects the sensitivity indexes of ventricular function. PCT and CRP are specific indicators of infectious diseases, and PCT is stimulated and secreted during infection; CRP is an acute

---

**Table 3. Adverse reactions**

<table>
<thead>
<tr>
<th>Group</th>
<th>Group A (60)</th>
<th>Group B (64)</th>
<th>$\chi^2$</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>1 (1.67)</td>
<td>1 (1.56)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gastrointestinal discomfort</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dizzy</td>
<td>1 (1.67)</td>
<td>0 (0.00)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nausea</td>
<td>0 (0.00)</td>
<td>0 (0.00)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total rate of adverse reactions</td>
<td>2 (3.34)</td>
<td>1 (1.56)</td>
<td>0.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

the effect of ceftazidime combined with levofloxacin on cardiopulmonary function and immune mechanism of patients.

The results manifested that the adverse reactions of both groups were similar, and the total adverse rates of rash, gastrointestinal discomfort, dizziness and nausea had little difference. However, the comprehensive clinical efficacy showed that ceftazidime combined with levofloxacin had a better clinical efficacy on heart failure complicated with pulmonary infection than ceftazidime alone. By analyzing the cardiac function and lung function of patients with combined medication and ceftazidime alone, we found that the levels of LVEDD and LA in the cardiac function of patients decreased after treatment. However, after ceftazidime combined with levofloxacin, LVEF, LVEDD and LA fluctuated more. We believe that ceftazidime combined with levofloxacin can improve cardiac function and reduce cardiac load better.

Lung dysfunction is one of the obvious signs in patients with lung infection [27]. With repeated infection, the inflammatory reaction in the lung is aggravated, and the inflammatory secretion will make the lung tissue sticky, forming a vicious circle of sticky sputum-inflammation-increased sticky sputum in lung infection, which aggravates the damage of lung function [28]. The results of bacteriological culture showed that the clearance rate of pathogenic bacteria after ceftazidime combined with levofloxacin was higher than that of ceftazidime alone, and MMV, TLC, FEV1 were increased dramatically, and the recovery of lung function was better. Levofloxacin is a broad-spectrum antibiotic, which regulates the inflammatory secretion of the body by killing bacterial inflammation, thereby reducing the adsorption capacity of mucus in the respiratory tract of patients and inhibiting the vicious circle of lung infection and inflammation to achieve better efficacy treating the disease [29, 30]. Saxena et al. found that

Effects of ceftazidime combined with levofloxacin of patients
Effects of ceftazidime combined with levofloxacin of patients

phase protein secreted by body tissue injury, which enters the blood circulation of the body [38, 39]. The secretion levels of BNP, PCT and CRP are inversely proportional to the prognosis of patients with heart failure and pulmonary infection [40]. It has been reported that ceftazidime combined with levofloxacin can increase the drug concentration of airway epithelial cells, reduce BNP and relieve the cardiopulmonary function of patients [41]. It is believed that ceftazidime combined with levofloxacin can improve the immune function while optimizing the clinical efficacy and cardiopulmonary function.

There are still some limitations in this study. For instance, the prognosis of ceftazidime combined with levofloxacin in the treatment of patients with heart failure and pulmonary infection is still unclear. Whether it can affect lung-related inflammatory factors through drug pathways needs further investigation.

Acknowledgements

This study is financially supported by Establishment of ECV304 cell apoptosis model induced by gp120 and study of its mechanism, Scientific research project approved by Heilongjiang Provincial Health Committee in 2019 2019-253.

Disclosure of conflict of interest

None.

Address correspondence to: Limin Xing, Department of Nursing, Xiangyang No. 1 People’s Hospital Affiliated to Hubei University of Medicine, Xiangyang 441000, Hubei Province, China. Tel: +86-13597512067; E-mail: xlm13597512067@163.com; Li Liu, Department of Cardiothoracic Surgery, Xiangyang No. 1 People’s Hospital Affiliated to Hubei University of Medicine, No. 1 Jiefang Road, Fancheng District, Xiangyang 441000, Hubei Province, China. Tel: +86-13986399736; E-mail: jason19870912@sina.com

References

Effects of ceftazidime combined with levofloxacin of patients


Effects of ceftazidime combined with levofloxacin of patients


