Three-dimensional-printed titanium alloy porous scaffold combined with trans-cinnamaldehyde for repairing osteonecrosis of the femoral head in a dog model

Runzi Gao1, Wenhui Ji1, Tianwei Xia1, Yanxing Fan1, Wei Wei1, Le Shi1, Jinzhu Liu1, Chao Zhang1, Lezhen Xue2, Jirong Shen1

1Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China; 2Jiangsu Center for Safety Evaluation of Drugs, Nanjing 211816, Jiangsu, China

Received September 17, 2019; Accepted March 14, 2020; Epub March 15, 2020; Published March 30, 2020

Abstract: Osteonecrosis of the femoral head (ONFH) is a common disorder that may be idiopathic, caused by trauma, or associated with alcohol or glucocorticoid use. The goals of early treatment include delaying or avoiding hip replacement, but there are no effective treatments for early-stage disease. The aim of the present study was to evaluate the effects of treatment with 3D-printed porous titanium alloy scaffold combined with daily intraperitoneal trans-cinnamaldehyde (TCA) in a dog model of ONFH. Four weeks after creation of the ONFH model, MRI examination of the femoral head showed the characteristic “double line sign” of ONFH, verifying the validity of our model. After another 12 weeks, femoral head specimens were harvested and examined by gross inspection; micro-computed tomography; histologic staining (hematoxylin and eosin; Masson); immunohistochemical analysis and quantitative real-time polymerase chain reaction analysis. Gross inspection of the femoral head in untreated ONFH animals at 16 weeks after model creation showed pale, exfoliating articular cartilage and disordered trabecular bone. Treatment with 3D-printed titanium alloy porous scaffold combined with TCA ameliorated the pathologic ONFH changes and significantly reduced immature bone tissue as well as immature collagen in the femoral head, as shown by Masson staining. This treatment also increased VEGF, BMP2, β-catenin, b-FGF, and RUNX2 expression and decreased PPARγ expression, compared with untreated ONFH. In conclusion, 3D-printed titanium alloy porous scaffold combined with TCA can effectively improve ONFH, which may be related to local repair. This provides the theoretical basis for a new treatment strategy for ONFH.

Keywords: Osteonecrosis of the femoral head, micro-CT, trans-cinnamaldehyde, 3D-printing titanium alloy porous scaffold

Introduction

Osteonecrosis of the femoral head (ONFH) is a relatively common disorder that most frequently occurs in men aged 30-50 years [1]. Approximately 20 million people worldwide and 8.12 million people in China have ONFH [2]. The duration of ONFH varies from a few months to several years and generally follows the pattern of “ischemia-necrosis-collapse”, eventually leading to partial or complete loss of hip function [3]. The disability rate of ONFH is high, accounting for 5%-12% of all patients undergoing total hip arthroplasty [4]. There are several major risk factors for ONFH, including trauma, long-term or high-dose use of glucocorticoids, and long-term heavily intake of alcohol; in other instances, ONFH is idiopathic [5]. However, the exact etiology and pathogenesis of ONFH remain unclear.

The prevailing hypothesis of the pathogenesis of ONFH is a “multiple hit theory”, which suggests that a pathogenic factor indirectly affects osteocytes by interfering with their blood supply, leading to cell damage and necrosis [6]. Before collapse of the femoral head, treatments focus on providing structural support for the head to promote bone regeneration, reduce pain, improve hip function, preserve the shape...
of the femoral head, and delay hip replacement [7]. Core decompression is one treatment option for patients with early ONFH, but the effectiveness of this procedure alone is limited. Therefore, new strategies, such as vascular free iliac bone graft and platelet-rich plasma transplantation, have been used to complement core decompression [8]. However, these techniques may produce additional surgical trauma or require complex separation and purification procedures. Therefore, it is important to develop an implant for core decompression that has good mechanical properties and biocompatibility, is biologically active, and induces osteogenesis.

As the main component of the volatile oil of cinnamon, trans-cinnamaldehyde (TCA) exerts many pharmacological effects, including antiviral [9], anti-oxidation, anti-inflammatory [10], hypoglycemic, and anti-tumor activity [11]. Recent studies have shown that TCA can inhibit the formation of osteoclast-like cells [12]. Moreover, studies have demonstrated that TCA has dose-dependent effects on osteoblast proliferation and osteogenesis [13, 14]. TCA can also improve the microstructure of bone tissue and improve its biomechanical properties [15]. However, the effects of TCA on ONFH have rarely been reported, and its role and mechanism remain unclear.

In this study, we used 3-dimensional (3D) printing technology to prepare porous titanium alloy scaffolds with a stable mechanical structure, suitable pore size, high porosity, and an elastic modulus matching that of normal bone tissue. Systemic TCA was concurrently administered to promote osteogenesis, and a bioactive porous structure was constructed. Titanium alloy implants provide a new option for treating ONFH by promoting both mechanical and biological reconstruction.

Materials and methods

Reagents and materials

A customized 3D-printed titanium alloy porous scaffold (3DP-scaffold, P1253) was created using electron beam melting (EBM) 3D-printing technology, based on computed tomography and 3D model data. A porous titanium scaffold was designed. The 3D structure of the scaffold was designed using computer assisted design (CAD) software (Magics), and the data were stored in STL file format. The porous architecture was based on a dodecahedron unit cell with a pore size of approximately 600 μm, strut diameter of approximately 500 μm, and porosity of approximately 70%. This architecture was adopted because pore sizes in this range are beneficial for in-growth of bone and vessels. The implants were prototyped using the EBM Q10 system (Arcam AB, Sweden).

TCA (L1704064) was purchased from Aladdin Bio-Chem Technology (Shanghai, China). Immunohistochemistry analyses were performed using the following antibodies, which were obtained from Bioss Antibodies (Beijing, China): vascular endothelial growth factor (VEGF; bs-1665R), bone morphogenetic protein 2 (BMP2; bs-1012R), peroxisome proliferator-activated receptor γ (PPARγ; bs-0530R), β-catenin (bs-1165R), basic fibroblast growth factor (b-FGF; bs-2235R), and Runx-related transcription factor 2 (RUNX2; bs-1134R).

Grouping of experimental animals

Thirty male beagle dogs, weighing approximately 10 kg, were purchased from Nanjing Chaimen Biotechnology Co., Ltd. (Nanjing, China, SCXK (Su) 2016-0007). They were divided into five groups (n=6): control group, ONFH group, iliac bone graft (IBG) group, IBG+3DP-scaffold, and IBG+3DP-scaffold+TCA group.

Construction of the canine ONFH model

The animals were anesthetized and placed on the operating table with their limbs secured. After shaving the operating area to remove hair, we disinfected the area with iodophor, applied a surgical towel (with a central hole), and marked the position of the acetabulum and femoral shaft. The incision began at the lower edge of the acetabulum and was extended caudally to expose the greater trochanter of the femur. The knee joint was then flexed and the hip joint was opened to expose the femoral head. Liquid nitrogen (100 mL) was injected into the tunnel around the femoral head for 8 minutes using a liquid nitrogen freezing gun, after which the area was rewarmed by injection of physiological saline at 37°C three times. The muscles and overlying tissues were then sutured together and a skin dressing was applied.
Treatment of canine ONFH with 3DP-scaffold and TCA

After exposing the iliac crest, we used a rongeur to obtain iliac crest tissue; we then removed the cortical bone, leaving only the cancellous bone for use as a bone graft. The femoral head was exposed as described above, and subsequent treatment depended on the group: ONFH group, no additional treatment; IBG group, implantation with autologous cancellous bone; IBG+3DP-scaffold group, implantation with 3DP-scaffold and autologous cancellous bone; and IBG+3DP-scaffold+TCA group, implantation with autologous cancellous bone and 3DP-scaffold, as well as intraperitoneal injection of 30 mg/kg TCA daily. Dead bone was removed from the necrotic area before insertion of the 3DP-scaffold or autologous bone.

Micro-computed tomography analysis

All dogs were sacrificed 12 weeks after the operation. Their femoral head tissues were removed, fixed in 4% formalin for 48 hours at 4°C, and then inspected visually and imaged using the micro-CT system (energy 70 kVp, threshold 220, current 114 μA, integration time 300 ms, Skyscan 1173; Skyscan, Kontich, Belgium). Bone regeneration and volume of new bone in the specimens were calculated using the system’s software.

Histologic evaluation of canine femoral head specimens

The femoral head tissues were fixed in 4% paraformaldehyde, decalcified, embedded in paraffin, cut into 5-μm sections, and then stained with hematoxylin and eosin (H&E) and Masson stain. An optical microscope (Olympus, Japan) was used to observe histopathologic changes.

Immunohistochemistry

Immunohistochemical staining was used to detect expression of VEGF, BMP2, PPARy, β-catenin, b-FGF, and RUNX2 in the femoral head tissues. Briefly, paraffin sections were deparaffinized, rehydrated, and then incubated in 3% hydrogen peroxide. The samples were incubated with the corresponding primary antibody at 4°C overnight after being blocked with 3% bovine serum albumin. They were subsequently incubated with secondary and tertiary antibodies for 20 minutes at 37°C. The samples were then stained with 3,3’-diaminobenzidine and re stained with hematoxylin. After dehydration and drying, the sections were observed under a light microscope (200×) (Nikon, Tokyo, Japan) and analyzed with Image J software (National Institutes of Health, Bethesda, MD, USA).

Quantitative real-time polymerase chain reaction (qPCR)

Total RNA was extracted from femoral head tissues and reversed based on the protocol. qPCR was carried out according to the manufacturer’s instructions. All data were quantified using the threshold cycle normalized to GAPDH. The primers used in the study were listed: RUNX2 forward: 5’-ATGAGAGTAGGTGTCCCGCC-3’; reverse: 5’-GGAGTGAATGGACGGGGATG-3; VEGF forward: 5’-GGGCTTTGGCCAAGTGATTG-3’; reverse: 5’-CGGGTGTTTGCACGTGTTGTC-3; BMP2 forward: 5’-CGGGGTACCAGCATCCTTTAT-3’; reverse: 5’-CCAAACCCCTCACAACCAT-3; β-catenin forward: 5’-AACCTCCTGTTGGAAATGCC-3’; reverse: 5’-GATGGTTGCAACCAACGCTG-3; PPARy forward: 5’-CCTCTCCATGCTGTTAGG-3’; reverse: 5’-GCAAGGACACCTTGGAGGC-3’; GAPDH forward: 5’-CCCAGACTTCCTGAAACGGG-3’; reverse: 5’-GGTGTTCCAGGAGGCCTTTA-3’.

Statistical analysis

All data are expressed as mean ± standard deviation. Significant differences between groups were determined using unpaired Student’s t-test, post-hoc Tukey’s honestly significant difference test, and analysis of variance (ANOVA) (SPSS 22.0 software, Chicago, IL, USA). P < 0.05 was considered statistically significant.

Results

Verification of ONFH model by magnetic resonance imaging

All dogs underwent hip magnetic resonance imaging (MRI) to assess the validity of our model. Low signal intensity in T1-weighted images of the head or head-neck junction area and high signal intensity in T2-weighted images and fat-suppressed images were used as criteria to diagnose ONFH. T2-weighted images of
the femoral head showed an uneven high-intensity signal with the characteristic “double line sign” of ONFH, verifying successful establishment of an ONFH model (Figure 1).

Gross inspection

At 12 weeks after surgery, the femoral heads in the control group were round, with no evidence of collapse or fragmentation. The articular cartilage was smooth and of normal color. At the same time, the femoral heads in the ONFH group were irregular in shape and showed evidence of collapse. The articular cartilage was rough and pale (Figure 2).

Micro-computed tomography analysis

As shown in Figure 3, postoperative femoral head repair was most apparent in the IBG+3DP-scaffold+TCA group. In this group, the shape of the femoral head was round. In the IBG+3DP-scaffold group, the femoral head exhibited moderate repair, although it was slightly collapsed. In the IBG group, the results were poor: bone resorption, bone destruction, and trabecular bone fractures were observed, and there was prominent collapse of the femoral head. The ONFH group had severe bone resorption and destruction, with no apparent bone repair. These animals exhibited bone trabecular fractures, as well as severely deformed and collapsed femoral heads. Thus, all active treatment groups exhibited improved necrosis of the femoral head, with improvement being most obvious in the IBG+3DP-scaffold+TCA.

H&E staining

In the control group, the articular surface of the femoral head was smooth, and the structure and morphology were normal; the chondrocytes were arranged in an organized fashion (Figure 4). Trabecular bone in the femoral head was clear and complete, with a regular arrangement. There was no fat cell hyperplasia or hypertrophy, and there was a normal quantity of hematopoietic cells in the medullary cavity. In the ONFH group, bone destruction in the subchondral necrotic area was severe, and discontinuous bone fragments were observed. Trabecular bone was sparse, narrowed, and fractured. The number of bone cells in necrotic trabeculae was significantly reduced, and the number of empty bone lacuna was significantly increased. These H&E findings of necrosis in the femoral head were reduced in the active treatment groups, with the improvement being most obvious in the IBG+3DP-scaffold+TCA group.

Masson staining

In the control group, green and blue staining representing immature bone tissue and collagen were rare; Masson staining was primarily red. Compared with the control group, the ONFH group showed a large quantity of blue-stained collagen in the trabecular bone and at the edges, and the immature collagen area was...
examine the expression of VEGF, BMP2, PPARγ, β-catenin, b-FGF, and RUNX2 in femoral head tissues. Compared with the control group, the ONFH group exhibited significantly decreased VEGF, BMP2, β-catenin, b-FGF, RUNX2 expression and significantly increased PPARγ expression (Figures 6 and 7). In the active treatment groups, expression of VEGF, BMP2, PPARγ, β-catenin, b-FGF, RUNX2 increased and expression of PPARγ decreased, compared with the ONFH group, with improvements being most pronounced in the IBG+3DP-scaffold+TCA group.

qPCR analysis

The mRNA expression of β-catenin, PPARγ, RUNX2, VEGF, and BMP2 was consistent with the results of immunohistochemistry. The ONFH group significantly decreased the mRNA expression of β-catenin, RUNX2, VEGF, BMP2 and significantly increased PPARγ mRNA expression (Figure 8). In the active treatment groups, mRNA expression of β-catenin, RUNX2, VEGF, BMP2 increased and mRNA expression of PPARγ decreased, compared with the ONFH group, with improvements being most pronounced in the IBG+3DP-scaffold+TCA group.
3DP-scaffold combined with TCA for ONFH

Titanium and its alloys have good mechanical load-bearing properties and biocompatibility and are one of the most widely used materials in clinical medicine [16]. At present, medical titanium metal prepared by conventional methods has poor biological activity, and its ability to guide bone tissue growth is unsatisfactory [17]. In addition, the traditional Ti-6Al-4V alloy has an elastic modulus of approximately 110 GPa, whereas the human body has an elastic modulus of approximately 20 GPa [18]. This difference in mechanical properties causes a stress shielding effect, which affects initial healing of the implant and long-term stability. To circumvent this problem, the alloy composition can be optimized: for example, the elastic modulus of the Ti-XNb alloy is as low as approximately 300 Pa [19]. It is also possible to construct a porous structure, thereby reducing the overall elastic modulus of the material. With the rapid development of 3D-printing technology, CAD can accurately control the structure and performance parameters of the supporting implant, such as its porosity, hole connectivity, aperture size, profile, and mechanical properties [20]. Porous titanium scaffolds can reach 80%-90% porosity, which not only reduces the elastic modulus of the alloy but also provides a good microenvironment for bone tissue regeneration and promotes the growth of bone tissue into the material [21, 22]. In this study, H&E and Masson staining, as well as micro-CT imaging, confirmed the effectiveness of the 3DP-scaffold for improving the pathologic changes associated with ONFH.

The main active ingredient of cinnamon is the volatile oil TCA. The results of a number of studies suggest that TCA is a potentially useful treatment strategy for ONFH. TCA may improve ONFH through several mechanisms: inhibition of the proliferation of fibroblasts, osteoclasts, and bone marrow mesenchymal stem cells; promotion of osteoblast proliferation; and enhancement of bone remodeling [23-25]. Abnormal proliferation of fibroblasts can promote degradation of the extracellular matrix and damage chondrocytes. Shi et al. found that high concentrations of TCA significantly inhibited the growth of fibroblasts in patients with osteoarthritis. Low con-
3DP-scaffold combined with TCA for ONFH

Centrations of TCA can significantly increase osteoblast alkaline phosphatase activity, upregulate BMP-2 mRNA expression, and promote proliferation and differentiation of osteoblasts, thereby enhancing osteogenesis [26]. In the current study, combining TCA with the 3DP-scaffold and autologous bone produced the best therapeutic effects.

Osteonecrosis of the femoral head involves interruption of, or damage to, the blood supply to the femoral head, causing cell death and subsequent repair of bone cells and bone marrow cell components. This, in turn, leads to structural changes in the femoral head, collapse of this head, and joint dysfunction [27]. There are many causes of this common and dif-

Figure 6. Immunohistochemistry results showing the effects of the 3DP-scaffold combined with TCA on the expression of b-FGF, β-catenin, and PPARγ in dogs with osteonecrosis of the femoral head. The femoral heads were removed from the dogs at the end of the experiment. 3DP-scaffold, 3-dimensional-printed scaffold; IBG, iliac bone graft; ONFH, osteonecrosis of the femoral head; TCA, trans-cinnamaldehyde.

Figure 7. Immunohistochemistry results showing the effects of the 3DP-scaffold combined with TCA on the expression of RUNX2, VEGF, and BMP2 in dogs with osteonecrosis of the femoral head. The femoral heads were removed from the dogs at the end of the experiment. 3DP-scaffold, 3-dimensional-printed scaffold; IBG, iliac bone graft; ONFH, osteonecrosis of the femoral head; TCA, trans-cinnamaldehyde.
difficult to treat disorder, and femoral neck fractures are more common when ONFH is caused by trauma, especially when the blood supply is damaged. However, the specific pathogenetic and molecular regulation mechanisms have not yet been clarified. At the molecular level, most recent research has focused on the regulation of transcription factors. In the present study, we used immunohistochemical analysis to examine the expression of VEGF, BMP2, PPARγ, β-catenin, b-FGF, and RUNX2 in ONFH. In the ONFH group, expression of VEGF, BMP2, β-catenin, b-FGF, and RUNX2 was greatly reduced, while PPARγ expression was significantly increased, when compared to control animals. These gene expression changes were reversed in the treatment groups.

Based on the above results, we conclude that the 3DP-scaffold implant combined with TCA can promote proliferation and differentiation of osteoblasts and inhibit proliferation of osteoclasts while providing structural support in an ONFH dog model. By upregulating VEGF to promote neovascularization, this treatment can be used as an innovative strategy for repairing bone defects associated with ONFH.

Disclosure of conflict of interest

None.

Address correspondence to: Jirong Shen, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China. E-mail: joint66118@sina.com; Lezhen Xue, Jiangsu Center for Safety Evaluation of Drugs, Nanjing 211816, Jiangsu, China. E-mail: 1525794594@qq.com

References

[2] Microsurgery Department of the Orthopedics Branch of the Chinese Medical Doctor Association; Group from the Osteonecrosis and Bone Defect Branch of the Chinese Association of Reparative and Reconstructive

