Original Article

3'-Daidzein sulfonate sodium provides neuroprotection by promoting the expression of the α7 nicotinic acetylcholine receptor and suppressing inflammatory responses in a rat model of focal cerebral ischemia

Xiao Li1,2*, Zhihua Huang1,2*, Song Liu1,2, Xueliang Zeng2,3, Jiali Xie1,2, Chaoming Liu1,2, Hai Xiao1,2, Ruizhen Liu1,2, Liangdong Li2,3, Jing Zeng1,2

1Gannan Medical University, Ganzhou 341000, People’s Republic of China; 2Key Laboratory of Cerebrovascular Diseases of Jiangxi Province, Ganzhou 341000, People’s Republic of China; 3The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, People’s Republic of China. *Equal contributors.

Received January 28, 2018; Accepted October 31, 2018; Epub November 15, 2018; Published November 30, 2018

Abstract: In a previous study using a rat model of focal cerebral ischemia/reperfusion (I/R) injury, we found that 3'-Daidzein sulfonate sodium (DSS), a derivative of daidzein, exerts neuroprotective effects by alleviating brain edema and reducing levels of interleukin (IL)-6. The present study was designed to further examine the potential mechanisms of the neuroprotective properties of DSS in a rat model of cerebral I/R injury. We found that treatment with DSS ameliorated neurological deficit, infarct size, and cerebral water content in rats with cerebral I/R injury. Moreover, treatment with DSS significantly reduced the levels of IL-1β, IL-6, and tumor necrosis factor (TNF)-α in serum and in the ischemic penumbra. Additionally, DSS treatment increased the expression of nicotinic acetylcholine receptor alpha 7 (α7nAChR), and inhibited the expression of glial fibrillary acidic protein, phosphorylated p65 nuclear factor kB, and phosphorylated inhibitor of NF-κBα, suggesting that DSS provides neuroprotection by suppressing inflammatory responses after focal cerebral I/R injury. Notably, α-bungarotoxin, an antagonist of α7nAChR, reversed the neuroprotective effects of DSS after cerebral I/R injury, suggesting that inhibition of α7nAChR expression is sufficient for reversal of the neuroprotective effects of DSS. In conclusion, we found that DSS treatment provides neuroprotection by promoting α7nAChR expression in a rat model of focal cerebral ischemia, thus establishing α7nAChR as a potential therapeutic target in cerebral I/R injury.

Keywords: 3'-Daidzein sulfonate sodium, cerebral ischemia/reperfusion, pro-inflammatory cytokines, nicotinic acetylcholine receptor alpha 7

Introduction

Molecular mechanisms that underlie central nervous system (CNS) injury by ischemic stroke are quite complex, primarily due to the activation of multiple pathways associated with inflammation, oxidative stress, energy metabolism and excitatory amino acid toxicity, free radical formation, calcium overload, and mitochondrial dysfunction [1, 2]. Cerebral inflammation plays an important role in the pathogenesis and progression of ischemic stroke [3]. There is increasing evidence that the levels of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, are upregulated after cerebral ischemia [4]. In addition, the inflammation-related transcription factor, nuclear factor-kB (NF-kB), is markedly upregulated and activated in ischemic brain regions [5]. Therefore, anti-inflammatory treatments have been proposed to reduce ischemic cerebral damage and improve clinical outcomes after ischemic insult.

Release of acetylcholine (ACh), the primary neurotransmitter elicited by the vagus nerve, significantly attenuated the release of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-18) in lipopolysaccharide-stimulated human macrophages [6]. This physiological mechanism is commonly known as the cholinergic anti-inflammatory pathway (CAP), and is mediated by the activity of nicotinic acetylcholine receptor alpha 7 (α7nAChR) [7]. A previous study reported the expression of α7nAChRs on the surface of hippocampal astrocytes; activation of these re-
DSS provides neuroprotection by promoting α7nAChR expression

The compound was diluted to the required concentration with double-distilled water before use in experiments. The chemical structure of DSS is shown in Figure 1.

Animals

Adult male Sprague-Dawley rats (weight = 250-280 g) were purchased from Hunan Silaike Jingda Laboratory Animal Co., Ltd. (China). The rats were maintained on a 12-hour light/dark cycle and given free access to food and water; they were adapted to these conditions for at least 7 days before experiments were performed. All animal experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals published by the US NIH (Publication No. 85-23, revised 1985) and were approved by the Experimental Animal Ethics Committee of Gannan Medical University (Permit No. SYXX (Gan) 2012-0006). In accordance with these guidelines, efforts were made to minimize animal suffering and to reduce the number of animals used.

Materials and methods

DSS

DSS, a white crystalline powder, was provided by the Shenyang Pharmaceutical University Department of Naturally Occurring Drugs and Chemistry (China); it exhibited a purity of >99%.

Animals

Adult male Sprague-Dawley rats (weight = 250-280 g) were purchased from Hunan Silaike Jingda Laboratory Animal Co., Ltd. (China). The rats were maintained on a 12-hour light/dark cycle and given free access to food and water; they were adapted to these conditions for at least 7 days before experiments were performed. All animal experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals published by the US NIH (Publication No. 85-23, revised 1985) and were approved by the Experimental Animal Ethics Committee of Gannan Medical University (Permit No. SYXX (Gan) 2012-0006). In accordance with these guidelines, efforts were made to minimize animal suffering and to reduce the number of animals used.

Focal cerebral I/R model and animal grouping

The rats used in our experiments were divided randomly into 5 groups: sham surgery, cerebral I/R injury (model group), 2.0 mg/kg DSS treatment (DSS group) [10, 11], 2.0 mg/kg DSS plus 0.5 μM α-BuTX (DSS + α-BuTX group) [13], and 2.0 mg/kg DSS plus normal saline treatment (DSS + vehicle group). The rats were anesthetized with an intraperitoneal (ip) injection of 10% chloral hydrate (350 mg/kg). Transient focal cerebral ischemia was induced as previously described by Longa et al. [14]. In brief, the right carotid rejoin was exposed through a ventral midline cervical incision. The right common carotid artery (CCA), external carotid artery (ECA), and internal carotid artery (ICA) were isolated. A 4-cm length of fish nylon thread, with 0.28-mm-diameter body and 0.38-mm-diameter tip, was introduced from the ECA into the ICA until mild resistance was felt (18-20 mm). In this manner, the thread occluded the origin of the middle cerebral artery (MCA). Two hours after occlusion of the MCA, the thread was removed to allow reperfusion of the ischemic area. Sham-operated animals were subjected to the same surgical procedures, but the MCA was not occluded. The rectal temperature was maintained at 37-38°C with a heat lamp and heating pad during the operation. The room temperature was controlled within the range of 25-27°C throughout the experimental proce-
DSS provides neuroprotection by promoting α7nAChR expression

Ten minutes after the induction of ischemia, the drug treatment groups were administered 2.0 mg/kg DSS, with or without 0.5 ml/kg α-BuTX, via the sublingual vein. The sham surgery and model groups were administered normal saline (1 ml/kg body weight) via the sublingual vein.

Evaluation of neurological deficit scores

The neurological function of the rats was evaluated at 24 hours after reperfusion by using a 5-point rating scale as follows: 0, no neurological deficit; 1, failure to extend left forepaw fully (a mild focal neurological deficit); 2, circling to the contralateral side (a moderate focal neurological deficit); 3, falling to the contralateral side (a severe neurological deficit), and 4, no spontaneous walk and unconsciousness.

Cerebral infarct volume measurement

Twenty-four hours after the assessment of neurological deficit, rats were deeply anesthetized and sacrificed; fresh brains were rapidly removed, harvested, and frozen at -20°C for 20 minutes. The brains were then coronally sectioned into 2-mm-thick sections with a stainless-steel mold and stained in a 0.5% 2,3,5-triphenyltetrazolium chloride (TTC, Sigma-Aldrich, St. Louis, MO, USA) solution for 10 minutes at 37°C in the dark. After staining, non-ischemic regions were colored red, while the infarct regions were white. The sections were then fixed with 4% paraformaldehyde (PFA) in 0.1 M PBS. Stained slices were photographed with a digital camera. The infarct area was quantified by a DT-200 image analysis system. The infarct volume was calculated by using the previously reported formula for corrected infarct volume [11]. Total infarct volumes were calculated as the sum of all section volumes multiplied by section thickness (2 mm). Infarct volume data were expressed as a percentage of total brain area.

Determination of brain water content

Twenty-four hours after reperfusion, rats were anesthetized with 10% chloral hydrate (350 mg/kg, ip) and their brains were removed. The cerebellum, lower brain stem, and olfactory bulb were subsequently dissected out, washed with normal saline, and dried with filter paper. The forebrain samples were then weighed to obtain the wet weight and were dried at 105°C for 24 hours before obtaining the dry weight measurements. Brain water content (%) was calculated as follows: [(wet weight-dry weight)/wet weight] × 100%.

Radioimmunoassay

Twenty-four hours after reperfusion, rats were anesthetized. Blood was obtained via a vein in the abdominal cavity and centrifuged at 4°C for 10 minutes at 3,000 × g; resulting serum was
DSS provides neuroprotection by promoting α7nAChR expression

store at -80°C. The levels of IL-1β, IL-6, and TNF-α in the serum were determined by commercially available radioimmunoassay kits (Beijing Furui Bioengineering Co., Beijing, China), in accordance with the manufacturer’s protocol.

Western blotting analysis

After 24 hours of reperfusion, rats were anesthetized. The ischemic penumbra portion of the cortex was rapidly isolated from the right forebrain on ice, then rapidly placed in liquid nitrogen. Protein samples were generated from frozen cortex homogenized with lysis buffer (Tris-HCl (pH 7.5) 50 mM, NaCl 250 mM, EDTA 10 mM, NP-40 0.5%, Leupeptin 10 μM, PMSF 1 mM, and NaF 4 mM). Equal amounts of protein were separated by 10% SDS-PAGE and transferred to a nitrocellulose membrane. The membrane was blocked with 5% skim milk and incubated with primary antibodies against α7nAChR, GFAP (Santa-Cruz Biotechnology, Santa Cruz, CA, USA), nuclear factor-κB-p65 (p65-NF-κB), phosphorylated p65 nuclear factor κB (p-p65-NF-κB), inhibitor of NF-κBα (IκBα), p-IκBα (Cell Signaling Technology, Beverly, MA, USA), and β-actin (Zhongsanjingqiao, Beijing, China). After
DSS provides neuroprotection by promoting α7nAChR expression

the membranes were washed with Tris-buffered saline + Tween, horseradish peroxidase-conjugated secondary antibodies (goat anti-rabbit IgG, rabbit anti-goat IgG, and goat anti-mouse IgG; Zhongsanjingqiao) were applied. The blots were developed by using ECL western blotting detection reagents (Thermo Fisher Scientific, Waltham, MA, USA). The images were obtained by super sensitivity chemiluminescence imaging system (Universal Hood II, Bio-Rad, Hercules, CA, USA). Densitometry analysis of bands was performed with the Image Lab 3.0 software. Results were expressed as the ratio of target protein gray value to β-actin gray value. Images of three independent experiments in each group.

Real-time quantitative PCR (qRT-PCR)

Total RNA from the ischemic penumbra of the cortex was isolated by using Trizol (Invitrogen, Carlsbad, CA, USA), in accordance with the manufacturer’s instructions. The quantity and quality of the total RNA were determined by using an Automatic Microplate Reader (Thermo Fisher Scientific). cDNA was synthesized from 2 μg total RNA with the M-MLV First-Strand Kit (Invitrogen) and used as the template for subsequent real-time PCR. The PCR cycling conditions were 95°C for 5 minutes, followed by two-step cycling conditions: 40 cycles of 95°C for 20 seconds, 60°C for 60 seconds, followed by a melting curve from 60°C to 95°C. This protocol was performed on the ViiATM 7 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). PCR was performed with the following primers: IL-1β forward primer 5’-CACCTCAATGGAGAGAAACATG-3’ and reverse primer 5’-TCTGGTGGTGGATTTTTTCT-3’, IL-6 forward primer 5’-AGCAGATCATGTGGAGCTTCT-3’ and reverse primer 5’-CAACATCTTTGCGAAGTACT-3’, TNF-α forward primer 5’-CCACCACGCTCTCTGCTTTGGAG-3’ and reverse primer 5’-GGGCCAGGCGACCTTCTCAGCT-3’. PCR was performed with the following primers: IL-1β forward primer 5’-CACCTCAATGGAGAGAAACATG-3’ and reverse primer 5’-TCTGGTGGTGGATTTTTTCT-3’, IL-6 forward primer 5’-AGCAGATCATGTGGAGCTTCT-3’ and reverse primer 5’-CAACATCTTTGCGAAGTACT-3’, TNF-α forward primer 5’-CCACCACGCTCTCTGCTTTGGAG-3’ and reverse primer 5’-GGGCCAGGCGACCTTCTCAGCT-3’. GAPDH was used as an endogenous control. Relative expression was calculated in terms of the fold change by using the 2-ΔΔCt method. All experiments were performed in triplicate.

Statistical analysis

Data were analyzed by using the Statistical Package for the Social Sciences (SPSS) 20.0 statistical software (IBM, Armonk, NY, USA). All experimental data were expressed as the mean ± standard deviation (SD). Comparisons of the sham model and DSS-treated groups were per-

Figure 4. Effects of DSS treatment on the expression of GFAP and α7nAChR in an I/R injury rat model. A. The expression levels of GFAP and α7nAChR in the ischemic penumbra were measured by qRT-PCR after 24 hours of treatment with or without 2.0 mg/kg DSS in the injury model, and without DSS treatment in the sham group. B. The expression levels of GFAP and α7nAChR in the ischemic penumbra were evaluated by western blotting analysis after 24 hours of treatment with or without 2.0 mg/kg DSS in the injury model, and without DSS treatment in the sham group. Data are expressed as mean ± SD. ***P<0.001 versus the sham group. #P<0.05 and ###P<0.001 versus the I/R model group.
DSS provides neuroprotection by promoting α7nAChR expression

DSS suppresses GFAP expression and promotes α7nAChR expression regulated by cerebral I/R injury

As shown in Figure 4, mRNA and protein expression levels of GFAP in the ischemic penumbra were significantly increased in the injury model group compared with the sham group. mRNA and protein expression levels of α7nAChR were significantly reduced in the ischemic penumbra compared with the sham group. mRNA and protein expression levels of GFAP in DSS treatment group were significantly increased compared with the injury model group.

Treatment with DSS reduces the expression of NF-κB during cerebral I/R injury

As shown in Figure 5, p-IκBα and p-p65 NF-κB expression levels in the ischemic penumbra were significantly greater in the injury model group compared with the sham group. In addition, careful analysis of the injury model group revealed that p-IκBα and p-p65 NF-κB expression levels were significantly reduced after treatment with DSS.

Inhibition of α7nAChR expression reverses the neuroprotective effects of DSS in cerebral I/R injury

To study the effects of DSS-mediated activation of α7nAChR activity, expression of α7nAChR was inhibited via treatment with its antagonist, α-BuTX. After 24 hours of treatment, α7nAChR expression in the DSS + α-BuTX group was significantly reduced, compared with the DSS + sham group.

Results

DSS reverses neurological deficits following cerebral I/R injury

Twenty-four hours after treatment, measurements were performed of brain infarct size, neurologic deficit scores, and water content rates (Figure 2). At 24 hours after cerebral I/R, the infarction areas of the right cerebral hemisphere were colored white, mainly in the frontal and parietal cortex and caudate putamen. Normal brain tissue appeared red and portions of the tissue represented transition zones of white to red from the penumbral area of the cerebral I/R injury. Compared with the sham group, the brain infarct size, neurologic deficit scores, and water content rates were elevated in the injury model group. Brain infarct size, neurologic deficit scores, and water content rates in the DSS-treated group were significantly lower than in the model group.

Treatment with DSS lowers levels of IL-1β, IL-6, and TNF-α during cerebral I/R injury

As shown in Figure 3, IL-1β, IL-6, and TNF-α levels in the collected serum and in the ischemic penumbra were significantly greater in the injury model group, compared with the sham group. After treatment with DSS, IL-1β, IL-6, and TNF-α levels were significantly reduced, compared with the injury model group.

DSS-treated groups with or without α-BuTX were compared by using an independent-sample t-test. P<0.05 was considered statistically significant.
DSS provides neuroprotection by promoting α7nAChR expression

Figure 6. Inhibition of α7nAChR expression by α-BuTX treatment reverses the effect of DSS on GFAP, p-IκB, and p-p65 NF-κB levels in a cerebral I/R injury rat model. A and B. The expression levels of GFAP and α7nAChR were measured by qRT-PCR after 24 hours of treatment with 2.0 mg/kg DSS, with or without 0.5 ml/kg of α-BuTX, in the ischemic penumbra of the injury rat model. C. Representative images of the expression of α7nAChR, GFAP, p-IκBα, IκBα, p-p65 NF-κB, and p65 NF-κB, evaluated by western blotting analysis, after 24 hours of treatment with 2.0 mg/kg DSS, with or without 0.5 ml/kg of α-BuTX, in the ischemic penumbra of the injury rat model. D and E. The relative expression levels of α7nAChR and GFAP were evaluated by western blotting analysis after 24 hours of treatment with 2.0 mg/kg DSS, with or without 0.5 ml/kg of α-BuTX, in the ischemic penumbra of the injury rat model. F and G. The ratios of p-IκBα/IκBα and p-p65 NF-κB/p65 NF-κB were calculated after treatment with 2.0 mg/kg DSS, with or without 0.5 ml/kg of α-BuTX, for 24 hours in the ischemic penumbra of the injury rat model. Data are expressed as mean ± SD. &&&P<0.001 versus the DSS + vehicle group.

In our study, we demonstrated that peripheral and CNS inflammatory response signals were activated after cerebral I/R injury. Inflammatory cytokines are known to be involved in the process of cerebral I/R injury, and play an important role in the development of CNS disorders [15]. It is well-known that the levels of pro-inflammatory cytokines (e.g., IL-1β and TNF-α) increase in serum and in the affected hemisphere of the brain within hours after ischemic insult. Subsequently, these cytokines enhance the expression of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on endothelial cells and leukocytes; this facilitates the adhesion and transendothelial migration of leukocytes. Through these mechanisms, acute cerebral ischemia triggers an inflammatory cascade, which causes brain edema and further neuronal injury. Accordingly, inhibiting the expression of IL-1β and TNF-α appears to reduce ischemic brain damage [16]. Consistent with these previous findings, the present study showed that cerebral ischemia induced the production of IL-1β, IL-6, and TNF-α; moreover, it markedly enhanced brain infarct size, neurologic deficit scores, and water content rates were significantly elevated in the DSS + α-BuTX group (Figure 7). Furthermore, the levels of the inflammatory cytokines IL-1β, IL-6, and TNF-α in the DSS + α-BuTX group were significantly greater than those in the DSS + vehicle group (Figure 8).

Discussion

In our study, we demonstrated that peripheral and CNS inflammatory response signals were activated after cerebral I/R injury. Inflammatory cytokines are known to be involved in the process of cerebral I/R injury, and play an important role in the development of CNS disorders [15]. It is well-known that the levels of pro-inflammatory cytokines (e.g., IL-1β and TNF-α) increase in serum and in the affected hemisphere of the brain within hours after ischemic insult. Subsequently, these cytokines enhance the expression of intercellular adhesion molecule 1 (ICAM-1) and E-selectin on endothelial cells and leukocytes; this facilitates the adhesion and transendothelial migration of leukocytes. Through these mechanisms, acute cerebral ischemia triggers an inflammatory cascade, which causes brain edema and further neuronal injury. Accordingly, inhibiting the expression of IL-1β and TNF-α appears to reduce ischemic brain damage [16]. Consistent with these previous findings, the present study showed that cerebral ischemia induced the production of IL-1β, IL-6, and TNF-α; moreover, it markedly enhanced brain infarct size, neurologic deficit scores, and water content rates, promoting neurological deficits. Importantly,
DSS provides neuroprotection by promoting α7nAChR expression

During the early stages of I/R cerebral injury, astrocytes are able to protect neurons from injury via housekeeping mechanisms [17]. However, after substantial progression of brain ischemia, astrocytes are rapidly over-activated, thus promoting morphological transformations and elevating the expression of pro-inflammatory cytokines (e.g., TNF-α, IL-1β, and IL-6), which aggravates the injury and exacerbates the formation of brain edema [18]. Therefore, the inhibition of excessive astrocyte activation is an attractive target to induce neuroprotective effects after I/R injury [19]. GFAP is an astrocyte marker that is detected after cerebral I/R injury. In the present study, we demonstrated a clear increase in the expression of GFAP after cerebral I/R injury; this was alleviated after DSS treatment. Our results thus suggest that DSS exerts neuroprotective effects through the inhibition of excessive astrocyte activation, thereby attenuating the release of pro-inflammatory cytokines.

NF-κB is an important transcription factor involved in many physiological and pathological processes, such as inflammation and apoptosis [20]. Activated NF-κB translocates from the cytoplasm into the nucleus, where it is associated with the production of pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6, and IL-8. This begins a vicious cycle of increased levels of TNF-α and IL-1β, which further activate NF-κB and enhance the production of pro-inflammatory cytokines. Vagus nerve stimulation has been shown to attenuate the disruption of tight junctions in the intestinal epithelium of endotoxemic mice; this is mediated by suppressing p65 NF-κB translocation and α7nAChR activation through inhibition of NF-κB [21]. In the present study, I/R cerebral injury decreased α7nAChR expression levels, promoted the expression of p-IκBα and p-p65 NF-κB protein in the ischemic penumbra. Notably, treatment with DSS was sufficient to reverse these changes. These results suggest that the activation of α7nAChR may exert an anti-inflammatory effect in cerebral I/R injury by inhibiting the activation of NF-κB and downstream production of pro-inflammatory cytokines. By using the antagonist, α-BuTX, we found that the inhibition of α7nAChR expression levels was sufficient to increase the expression of both p-IκBα and p-p65 NF-κB, which are activated through the NF-κB signaling pathway. This antagonist-mediated inhibition promoted the expression of IL-1β, IL-6, and TNF-α; it also enhanced brain infarct size, neurologic deficit scores, and water content rates, reversing the neuroprotection obtained through treatment with DSS.

In summary, we showed that treatment with DSS effectively suppresses the NF-κB signaling pathway, inhibits the pro-inflammatory respon-
DSS provides neuroprotection by promoting α7nAChR expression and astrocyte activation, and provides neuroprotection; these effects are mediated through increased α7nAChR expression in a rat model of focal cerebral ischemia. Thus, α7nAChR may provide a therapeutic target against cerebral I/R injury and should be further evaluated.

Acknowledgements

This study was supported by Grants from the National Natural Science Foundation of China (NSFC, 81160399) and the Science and Technology Landing Project (KJLD13085).

Disclosure of conflict of interest

None.

References

DSS provides neuroprotection by promoting α7nAChR expression

