Original Article
Effects of chidamide and its combination with decitabine on proliferation and apoptosis of leukemia cell lines

Jianping Mao1,2,3, Shan Li1,2,3, Huihui Zhao1,2,3,4, Yu Zhu1,2,3, Ming Hong1,2,3, Han Zhu1,2,3, Sixuan Qian1,2,3, Jianyong Li1,2,3

1Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; 2Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; 3Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; 4Department of Oncology, The Second Affiliated Hospital of Southeast University, Zhongfu Road 1-1, Nanjing 210003, China

Received January 16, 2018; Accepted July 7, 2018; Epub August 15, 2018; Published August 30, 2018

Abstract: Chidamide, a novel histone deacetylase inhibitor (HDACI), shows anticancer ability against leukemia and solid tumors. Decitabine (5-Aza-2'-deoxycytidine, DAC), an anti-leukemic drug, is effective in treating acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). In our study, we investigated the anti-leukemic ability of chidamide, as well as its combination with decitabine in leukemia cells (HL60 and NB4). The results showed that the inhibitive effect of chidamide was dose- and time-dependent at concentration of 0.25-8 μM. The proliferation of HL60 and NB4 cells were significantly inhibited by chidamide or its combination with decitabine. The combination had a remarkable synergistic anti-leukemic effect. Chidamide increased the levels of acetylated histone H3 in both HL60 and NB4 cells by effectively inhibiting histone deacetylases (HDAC) enzymatic activities. The cells were blocked in G\textsubscript{0}/G\textsubscript{1} phase by chidamide, but when chidamide was combined with decitabine, the cell cycle was mainly blocked in G\textsubscript{2}/M phase, accompanied by the induction of p21 expression. In both cases (chidamide or chidamide combined with decitabine), apoptosis of tumor cells was induced through up-regulation of Bax and Caspase-3, and down-regulation of Bcl-2, showing a synergistic cytotoxicity. In conclusion, our results suggested that chidamide in combination with decitabine might be an effective therapy for AML.

Keywords: Chidamide, acute myeloid leukemia, decitabine, apoptosis

Introduction

Recent studies have shown that cancer can be caused not only by the change of DNA sequence, but also by two typical epigenetic modifications: DNA promoter methylation and histone modification [1, 2]. These two epigenetic modifications can remodel chromatin, alter cell phenotypes, regulate gene expression, and promote cancer development [3, 4]. Both DNA methylation and histone modification have a reversible nature [2], which is most intriguing in designing therapeutic strategies. In addition, methylation and acetylation modifications of specific sites can regulate cellular pathways involved in cell cycle control and apoptosis [5]. Therefore, the epigenetic leukemic epigenome has become a new target of the treatment with histone deacetylase inhibitors (HDACI) and hypomethylating agents (HMAs) [6].

DNA methylation has been widely studied in epigenetic genetics. In acute myeloid leukemia (AML), abnormal DNA methylation can silence the expression of tumor suppressor genes (TSGs) [7, 8]. Histone deacetylases (HDAC) can modulate gene expression and chromatin modification by inducing acetylation of histones and non-histone proteins [9]. In addition, the conversion of HDAC from open state to the compact configuration is closely related to epigenetic gene silencing [10]. Besides HDAC-induced gene silencing, DNA methylation is also engaged in histone methylation [10, 11]. This mechanism provides that the combination of HDACI and HMAs may be effective to fight against leukemia.

As a synthetic HDACI of the benzamide class, chidamide (CS055/HBI-8000) has been re-searched in many clinical trials in the USA and
Combinatorial effects of chidamide and decitabine on leukemia cell lines

Table 1. Primers used for quantification measurements of mRNA expression

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcl-2</td>
<td>CTGGGAGAACACGGGTACGATAA</td>
<td>GGCTGGGAGGAGAAGATGC</td>
</tr>
<tr>
<td>Bax</td>
<td>TCATCCAGGATCGACAGG</td>
<td>TGTCCAGGCGGCGAAAT</td>
</tr>
<tr>
<td>Caspase-3</td>
<td>AGGCAGGCGACGAGTT</td>
<td>TCCCATAGAGTTCCACAAA</td>
</tr>
</tbody>
</table>

China, and ratified to treat cutaneous T-cell lymphoma (CTCL) and peripheral T-cell lymphoma (PTCL) in China [12]. In our study, we detected the anti-leukemic effects of chidamide combined with decitabine on AML cells. The results showed that chidamide and its combination with decitabine had a strong anti-leukemic ability through inducing cell cycle arrest, inhibiting cell proliferation and accelerating apoptosis of AML cells. These results reveal that chidamide is a potential drug for leukemia, especially when it is combined with decitabine.

Materials and methods

Reagents

Chidamide supplied by Chipscreen Biosciences Ltd. (Shenzhen, China) was dissolved in dimethyl sulfoxide (DMSO) (Invitrogen, USA) at a 20 mM concentration for stock solutions. The stock solutions were stored at -80°C. Decitabine was purchased from Sigma (St. Louis, Mo, USA) and also dissolved in DMSO at a 20 mM concentration and kept at -80°C. The stock solutions were diluted to working concentrations in the subsequent experiments with growth media.

Cell lines and cell culture

AML cell lines HL60 and NB4 were obtained from the Cell Biology Research Institute (Chinese Academy of Science, Shanghai, China). The cell lines were cultured in RPMI 1640 containing 10% fetal bovine serum (FBS, Gibco, Life Technologies, NY, USA), 100 U/mL penicillin and 100 μg/mL streptomycin (1 × P/S), in an incubator at 37°C in a humidified atmosphere consisting of 95% air and 5% CO₂.

Cell viability assay

The cytotoxic effect of chidamide or decitabine alone, or the combination of the two on the AML cell lines was determined by cell counting kit-8 (CCK-8, Dojindo, Japan) assay. Cells were seeded at a density of 1-3 × 10⁴/mL in 96-well flat-bottomed microtiter plates, 100 μL/well, and exposed to chidamide (0-8 μM) or decitabine (0-100 μM) with varying concentrations, alone or in combination for 72 h, then subjected to a standard CCK-8 assay. The plate was read at a wavelength of 490 nm under a microplate reader (Bio-Rad Laboratories, Hercules, CA, USA). The combination index (CI) value was calculated from the fraction-affected value of each combination according to the Chou-Talalay method using Compusyn software (Combusyn, Inc.). The CI value reflected the degree of drug interaction: CI < 1, CI = 1, or CI > 1 indicated synergistic, additive, or antagonistic effects, respectively. Statistical analysis and IC₅₀ determination were calculated in Graph Pad 5 (Prism software). All experiments were performed in triplicate.

HDAC activity assay

HDAC activity was determined as described in the Colorimetric HDAC Activity Assay kit (Epigentek Group Inc.). Each reaction (100 μL) contained nuclear protein (50 μg) extracted from leukemia cells (isolated by Nuclear and Cytoplasmic Extraction reagents; Pierce) and HDAC substrate. To test the effect of HDACI, chidamide was added to the mixtures and incubated at 37°C for 30 min. Fluorescence intensity was measured at an excitation of 360 nm and an emission of 460 nm using a Synergy TM2 microplate reader from BioTek (Winooski, VT, USA). Each compound concentration was performed at least twice.

Cell cycle analysis

The cells were treated with chidamide alone or chidamide combined with decitabine for 72 h. Then, the cells were collected and washed with PBS and then fixed overnight in 75% ice-cold ethanol at 4°C. After that, the fixed cells were harvested, stained with propidium iodide/RNase (BD Pharmingen, San Diego, CA, USA) and incubated in the dark at room temperature for 15 min after being washed with PBS. The DNA content was analyzed by flow cytometry. ModFit LT software (Verity Software House, Inc., Topsham, ME) was used for data analysis.
Combinatorial effects of chidamide and decitabine on leukemia cell lines

Cell apoptosis assay

The effects of chidamide alone or chidamide combined with decitabine on apoptosis in HL-60 or NB4 cell clines were analyzed by flow cytometry analysis. Briefly, cells were harvested, washed with PBS, and resuspended in 400 μL Annexin Binding Buffer. Then 1 μL FITC-conjugated Annexin-V and 5 μL of PI (BD Pharmingen, San Diego, CA, USA) were added to each sample. Stained samples were analyzed by flow cytometer (FACS Calibur; BD Biosciences, Franklin Lakes, NJ, USA). DNA fragmentation was detected as described in the DNA Ladder assay kit (Beyotime Biotech).

Total RNA isolation and qRT-PCR

Total cellular RNA was extracted from cells using Trizol reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s protocols. RNA was eluted with RNase-free water, quantified at an absorbance at 260/280 nm, and used for reverse transcription reaction. Total mRNA was reverse transcribed into cDNA using RT reagent kit (TaKaRa, Dalian, China). Primers (Shenggong Bioengineering Co. Shanghai, China) used for quantification measurements are shown in Table 1. GAPDH was used as an internal standard.

Real-time quantitative reverse transcription-PCR (qRT-PCR) was performed with the Fast Start Universal SYBR Green Master (ROX) (Roche, Germany) following the instruction of the supplier. The RT-PCR conditions were as follows: 1 cycle at 94°C for 10 min, 40 cycles at 94°C for 10 sec, 60°C for 30 sec, and one cycle at 72°C for 3 min. The results were analyzed using 2-ΔΔCt, in which ΔCt = Ct (target gene) - Ct (internal reference), ΔΔCt = ΔCt (sample) - ΔCt (control). Each sample was measured in triplicate.

Western blotting analysis

Cultured cells were harvested, washed with PBS and then lysed in RIPA buffer. The protein lysates were clarified by centrifugation at 12000 g for 30 min at 4°C and the supernatant was collected. The protein of each sample was quantified by a BCA (bicinchoninic acid) assay (Pierce). Equal amounts of proteins were separated by SDS/PAGE and then electrotransferred onto a PVDF membrane (Millipore). The membranes were blocked with 5% skim milk, incubated with primary antibodies at 4°C overnight in TBS-T (10 mM Tris-HCl, pH 8, 150 mM NaCl, 0.1% Tween 20). The primary antibodies were as follows: anti-acetylated histone H3, -Bax, -Bcl-2, -p21, -Caspase 3. GAPDH (Cell Signaling, Herts, UK) was used as a loading control. The target protein bands were visualized using ECL and exposed to X-ray film. The abundance of proteins was quantified using imaging processing software (Peiqing Biotech Ltd., Shanghai, China).

Statistical analysis

All data were presented as means ± standard deviation (SD). SPSS 17.0 Student’s t test was
Combinatorial effects of chidamide and decitabine on leukemia cell lines

used to compare the two independent groups and corresponding bar graph or line charts were drawn by GraphPad Prism 5 software. One way analysis of variance (ANOVA) was used to compare the multiple independent groups. Differences of measurement data and enumeration data were compared respectively with Student’s t test. Statistical \(P < 0.05 \) was considered significant.

Results

HDAC inhibitory activity of chidamide

To assess the activity and efficacy of chidamide, we determined the HDAC inhibitory effect of chidamide. We treated HL60 and NB4 cell lines with 0, 0.25, 0.5 and 1 \(\mu \)M chidamide for 72 h. It was indicated in vitro that chidamide showed HDAC inhibition capability (Figure 1A). Then we examined its ability to change the lysine residues of histone H3 acetylation of the HL60 and NB4 cell lines in a dose and time dependent manner (Figure 1B). The results showed that chidamide suppressed HDAC and induced the accumulation of acetylated histone H3 in HL60 and NB4 cells.

Inhibitory effects of chidamide and decitabine on cell proliferation in leukemia cells

To determine the effect of chidamide and decitabine on proliferation, we first examined the proliferation of HL60 and NB4 cells in response to chidamide and decitabine of various concentrations using CCK-8 assay. Results showed that the half-maximal inhibitory concentrations (IC\(_{50}\)) of chidamide on HL60 and NB4 cell lines were (1.544±0.050) \(\mu \)M and (0.460±0.039) \(\mu \)M, respectively. IC\(_{50}\) values of decitabine were (4.724±0.067) \(\mu \)M and (2.788±1.725) \(\mu \)M, respectively, in three independent experiments after a 72 h exposure. Chidamide and decitabine caused growth arrest (Figure 2E). The results showed that chidamide suppressed HDAC and induced the accumulation of acetylated histone H3 in HL60 and NB4 cells.

![Figure 2. Chidamide, decitabine and their combination inhibit cell proliferation in leukemia cells. A-D. NB4 and HL60 cells were exposed to chidamide for 72 h and then the cell viability was determined by CCK-8 assay. The data represents the time- and dose-dependent effects of chidamide and decitabine on cell proliferation in NB4 and HL60 cells. Results are means ± SD. E, F. NB4 and HL60 cells were exposed to chidamide (0.5 \(\mu \)M) combined with decitabine (5 \(\mu \)M) for 72 h and then the cell viability was determined by CCK-8 assay. Results are means ± SD for three independent experiments.](http://example.com/figure2.png)
Combinatorial effects of chidamide and decitabine on leukemia cell lines

Cell cycle arrest induced by chidamide and its combination with decitabine in leukemia cells

Since chidamide, decitabine and their combination inhibited cell proliferation, we intended to test if cell cycle arrest could be contributed to their synergistic antitumor effects. First, we examined the effect of chidamide on cell cycle arrest in leukemia cells. After treating the HL60 and NB4 cells with chidamide for 72 h, cells arrested at the G0/G1 phase in a dose dependent manner (Figure 4A, 4B). Then, we explored the distribution of cell cycle phases treated with chidamide-decitabine combination for 48 h. Chidamide caused an arrest in G0/G1 phase, however, decitabine induced G2/M phase cell arrest in HL60 and NB4 cell lines. In the combined group, the proportions of G0/G1 phase and G2/M phase were higher than the control group, but mainly in G2/M phase, especially in NB4 cells (Figure 4D, 4E). Further, in order to monitor the molecular mechanism of chidamide, we detected the proteins involved in cell cycle regulation by Western blot. As shown in Figure 4C, p21 protein expression was up-regulated when treated with chidamide alone, which was in accordance with the result of cell cycle analysis. The up-regulation of p21 expression induced by chidamide could inhibit cell growth and lead to cell cycle arrest, while chidamide combined with decitabine could also up-regulate p21 protein expression in a similar way (Figure 4F).

Apoptosis induced by chidamide and its combination with decitabine in leukemia cells

Since cytotoxicity could lead to cell apoptosis, we investigated whether chidamide could induce apoptosis in leukemia cells. To examine the effects of chidamide on cell viability, we carried out a DNA ladder assay and a flow cytometry analysis with Annexin V/PI double staining. We observed Annexin V positive cells and DNA fragmentation in HL60 and NB4 cells 72 h after chidamide treatment (Figure 5A, 5B). The results indicated that apoptosis occurred in these cells with a significantly higher early apoptotic rate than the late apoptotic rate. Similarly, DNA fragmentation was observed in HL60 and NB4 cells after being exposed to chidamide for 72 h (Figure 5C). These results showed that chidamide induced cells apoptosis in a dose dependent manner (Figure 5A, 5B).

Figure 3. Chidamide synergies with decitabine in inhibiting the proliferation of leukemia cell lines. A, B. NB4 or HL60 cells were treated with chidamide combined with decitabine. Combination index values were calculated with the CompuSyn software, which was developed based on the median-effect method. CI < 1 indicates synergy; CI = 1 is additive; and CI > 1 means antagonism. The result showed that chidamide combined with decitabine had the most notable synergistic effect.
Combinatorial effects of chidamide and decitabine on leukemia cell lines
Then the synergic antitumor function of chidamide combined with decitabine was determined by observing apoptosis in cells. We found that apoptosis in HL60 and NB4 cells was greatly enhanced when the cells were disposed with 0.5 μM chidamide combined with 5 μM decitabine simultaneously for 48 h (Figure 5E, 5F). The results also showed that chidamide alone mainly induced early apoptosis, while the combination of chidamide and decitabine caused late apoptosis.

The B-cell lymphoma 2 (Bcl-2) family proteins and caspases are critical regulators of the apoptotic pathways. In order to understand the molecular mechanism underlying chidamide-induced apoptosis, we explored the expression levels of Bcl-2, Bax, and Proaspase-3 in HL60 and NB4 cells during the 72 h chidamide treatment. The results of Western blot showed that chidamide significantly down-regulated Bcl-2 and Proaspase-3, while Bax protein levels were up-regulated in a dose-dependent manner (Figure 5D). Meanwhile, chidamide combined with decitabine also caused similar regulation in the Bcl-2 family proteins as those treated with single chidamide (Figure 5F). Therefore, we speculated that chidamide combined with decitabine can also induce apoptosis through the Bcl-2 pathway.

The effects of chidamide alone or combined with decitabine on mRNA levels of Bcl-2, Bax and Caspase-3 were explored by qRT-PCR. Bcl-2 mRNA levels were significantly down-regulated in HL60 and NB4 cells when they were exposed to chidamide alone for 48 h, meanwhile, the levels of Bax and Caspase-3 were significantly up-regulated. The cells exposed to chidamide combined with decitabine also demonstrated the similar pattern regarding to the mRNA levels of Bcl-2, Bax, and Caspase-3.

Discussion

Epigenetic aberrations occur during tumor genesis [13, 14]. Genes that can be silenced by abnormal methylation or acetylation are promising targets for cancer therapies [15]. In clinical practice, using HDACI or HMAs alone is not an effective strategy, but their combination or with other anti-tumor drugs may be different.

To investigate this strategy, hypomethylating combination trials for AML have been carried out [16-19], including the application of HDACI [20, 21]. HMAs have already shown promising effects in clinical treatment of AML [22]; besides, the significant anti-tumor effects of HMAs combined with HDACI have been observed in several *in vitro* and *in vivo* studies [6, 10, 23, 24]. In our study, we investigated the potential of chidamide combined with decitabine in leukemia treatment by inducing cell cycle arrest and apoptosis.

Chidamide is a novel HDACI with a similar chemical structure to entinostat (MS-275). It can...
Combinatorial effects of chidamide and decitabine on leukemia cell lines

A

Chidamide

PI

0 0.25 0.5 1μM

NB4

HL60

Annexin V-FITC

B

NB4

HL60

Apoptotic Cells (%)

control 0.25 0.5 1

Chidamide(μM)

C

Chidamide

Marker 0 0.25 0.5 1 μM

NB4

HL60

3kb

1kb

500bp

D

Chidamide

BAX

Bcl-2

Pro caspase-3

GAPDH

NB4

HL60

0 0.25 0.5 1 μM

0 0.25 0.5 1 μM

E

control Chidamide 0.5μM Decitabine 5μM Chidamide+decitabine

NB4

Annexin V-FITC

2574

Am J Transl Res 2018;10(8):2567-2578
selectively inhibit HDAC1, HDAC2, HDAC3 and HDAC10, especially for HDAC2 and HDAC3 [12]. Chidamide is highly toxic to leukemia cells in a concentration- and time-dependent manner (Figure 2A). Compared with MS-275, chidamide is less toxic, more tolerant and more stable [13].

In this study, it is indicated that chidamide could inhibit growth and induce apoptosis of leukemia cells in a dose-dependent manner. Many experiments have confirmed that HDACI induces cell cycle arrest in the G_0/G_1 phase in vitro [12, 25-28].

Decitabine increased the cell number in G_0 phase, while chidamide caused an arrest in G_0/G_1 phase in both NB4 and HL60 cell lines. The combination of the two drugs induced a marked increase of cells in G_0/M, showing that the effects were overlaid. According to Western blot assay, the expression level of p21 protein in the combination group was up-regulated, which could induce cell cycle arrest and inhibit
Combinatorial effects of chidamide and decitabine on leukemia cell lines

Cell proliferation. In addition, the combination of chidamide and decitabine could activate the p53 signaling pathway and induce apoptosis [5, 27, 29].

HDAC activity and the high acetylation level of histone are closely related to low p21 expression levels in tumor cells [30]. The p21 protein is a cyclin dependent kinase (CDK) inhibitor with an extensive kinase activity. Our study has shown that chidamide could inhibit HDAC activity and up-regulate p21 expression levels. HDACI could also inhibit the expression of cyclin D, resulting in cell cycle arrest in G1 phase [12, 31, 32]. However, the interaction between p21 and CDK is not included in this study. So it is necessary to further confirm this mechanism in the future research.

Epigenetic drugs could overcome drug resistance by inducing cell cycle arrest in G2/M phase and reactivating the previously silenced genes. The combination of two epigenetic drugs could be more effective in lowering drug resistance than the use of one drug [33], and the synergistic effect could be more obvious in inducing apoptosis.

Bcl-2 family proteins are pivotal to cell fate because they can regulate cells in two ways: anti- and pro-apoptosis [34, 35]. The results of our study demonstrated that chidamide-induced apoptosis in NB4 and HL60 cells via the anti-apoptotic Bcl-2 family proteins, the up-regulation of pro-apoptotic Bcl-2 family protein Bax and the activation of Caspase-3. In addition, various HDACI in combination with decitabine shortened the tumor cell survival at mRNA and protein levels [36, 37]. The effects of HDACI are multifactorial. Mitochondria membrane potential and ROS generation can induce apoptosis [26]. Many studies have reported HDACI alone or its combination with decitabine can induce ROS production and change mitochondria membrane potential. For this reason, we excluded the detection of mitochondria membrane potential and ROS generation in our experiment.

When chidamide was combined with decitabine, chidamide enhanced the cytotoxicity in both HL60 and NB4 cell lines potently and synergistically. This synergistic cytotoxicity was obvious because the two agents could cooperatively induce cell cycle arrest and apoptosis. This study showed that the decitabine-induced inhibition was incomplete (Figure 2C, 2D), but when combined with chidamide, the inhibition was significantly improved, showing a marked synergistic effect. The possible reason is that the two drugs can block different cell cycles.

In the study of U937 and SKM-1 cell lines, it was found that decitabine combined with other drugs could exert an anti-leukemia effect by regulating MAPK and Wnt signaling pathway [38]. Chidamide can also induce apoptosis through inhibiting PI3K/Akt and MAPK/Ras signal pathway [39] and activating JNK signal pathway [26] to fulfill the anti-leukemia function. Therefore, many antitumor drugs have multi-functions and multi-targets. HDACI combined with decitabine at different concentrations might have multiple pathways to induce cell cycle arrest and differentiation. In a word, these results suggested that chidamide induced apoptosis through intrinsic apoptotic pathways [40].

Chidamide in combination with decitabine has a synergistic anti-leukemia effect in vitro, and can be taken as a therapeutic strategy for acute myeloid leukemia.

Additional files: All original western images were showed in Supplementary Figure 1.

Acknowledgements

We thank Chipscreen Biosciences for providing the chidamide used in the present study; This work was sponsored by grants from the National Natural Science Foundation of the People's Republic of China (No 81270614, 81300379, 81570134, 81570141, 81522-001, and 81200362), National Public Health Grand Research Foundation (No 201202017), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institute (No JX10231801), and Key Project of Jiangsu Province Health Agency (No K201107).

Disclosure of conflict of interest

None.

Address correspondence to: Drs. Sixuan Qian and Jianyong Li, Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China;
Combinatorial effects of chidamide and decitabine on leukemia cell lines

Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China. Tel: 13951882973; E-mail: qiansx@medmail.com.cn (SXQ); Tel: 13951877733; E-mail: lijianyonglm@medmail.com.cn (JYL)

References

Combinatorial effects of chidamide and decitabine on leukemia cell lines

2578 Am J Transl Res 2018;10(8):2567-2578
Combinatorial effects of chidamide and decitabine on leukemia cell lines
Supplementary Figure 1. A. Chidamide promoted histone H3 acetylation in HL60 and NB4 cell lines. B. NB4 and HL60 cells were treated with indicated doses of chidamide for 72 h and then p21 was assessed using Western blot analysis. C. HL60 and NB4 cells were exposed to chidamide and decitabine simultaneously at indicated doses for 48 h, and then subjected to Western blotting. D. HL60 and NB4 cells were exposed to chidamide at indicated doses then subjected to Western blotting. E. Expression of Bcl-2, Bax and procaspase-3 were assayed by a standard Western blot method after HL60 and NB4 cells were treated with chidamide combined with decitabine.