Original Article

Neuroprotective effect of miR-665 against sevoflurane anesthesia-induced cognitive dysfunction in rats through PI3K/Akt signaling pathway by targeting insulin-like growth factor 2

Xihua Lu, Shuaiguo Lv, Yan Mi, Lei Wang, Gensheng Wang

Department of Anesthesiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital Anesthesiology, Zhengzhou 450003, Henan, China

Received October 24, 2016; Accepted February 7, 2017; Epub March 15, 2017; Published March 30, 2017

Abstract: The aim of this study was to investigate the in vivo and in vitro effects of miR-665 on sevoflurane anesthesia-induced cognitive dysfunction. SH-SY5Y cells and male SD rats were treated with sevoflurane to simulate anesthesia-induced cognitive dysfunction. The cells and rats both were transfected with a miR-665 mimic, inhibitor, scramble, IGF-2 siRNA, or treated with PI3K/Akt inhibitor LY294002. The cell apoptosis, autophagy, growth related proteins, and mRNA levels were measured using different methods. The motor performance was assessed using the Morris water maze (MWM) test. Finally, the differences were statistically analyzed. It was noted that sevoflurane-induced miR-665 downregulation accompanied with the upregulation of IGF-2 in vivo and motor deficits in vitro. Moreover, sevoflurane also induced hippocampal neuroapoptosis; reduced regular autophagy; increased Bax/Bcl-2 ratio; decreased the expression of Beclin 1, PSD95, and p-CREB; and activated PI3K/Akt signaling pathway. However, the treatment by miR-665 mimics significantly reversed all the molecular changes and improved motor performance. Our data demonstrate the neuroprotective effect of miR-665 against sevoflurane anesthesia-induced cognitive impairment. This study suggests that miR-665 might be explored as a potential target of therapy for sevoflurane-induced cognitive impairment.

Keywords: miR-665, insulin-like growth factor 2, neuron apoptosis, PI3k/Akt

Introduction

Old-aged individuals with Alzheimer’s disease and those who have received anesthesia or undergone surgery usually suffer from cognitive dysfunction or impairment [1, 2]. Elderly people with nerve diseases are always a high-risk population for cognitive dysfunction [3, 4]. Abnormal alterations and accumulation of genetic or non-genetic elements are the main inducements of cognitive dysfunction and impairments; therefore, the complete therapy of cognitive impairments in elderly people is an arduous process with a limited success [5].

Several lines of evidence have shown that cognitive impairments caused by surgical anesthesia or brain trauma are associated with dysregulation of signaling pathways, such as an inactivation of PI3K/Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways [6, 7] and enhanced neuroapoptosis or neurotoxicity resulting by these dysregulations [7, 8]. As reported earlier, neuroapoptosis is also linked to abnormal alterations of postsynaptic density protein (PSD)-95 [9], cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) [10], brain-derived neurotrophic factor (BDNF) [11], and dysregulation of microRNAs (miRNAs) including miR-34a [12], miR-383 [13], and miR-665 [14].

miRNA are small noncoding RNAs. They play an important role in metabolism, thus their abnormal transcription results in certain diseases [15, 16]. Many of these miRNAs have been used as a specific biomarker for diseases, such as miR-21 and miR-383 in lung cancer [17, 18], miR-210 in congestive heart failure and glioma [19, 20], and miR-665 in con-
gestive heart failure [21]. Recently, numerous miRNAs have been identified to be associated with anesthesia-related cognitive dysfunction such as miR-665 [14, 22], miR-572 [23], and miR-181 [24]. Therefore, miRNA can be targeted for potential therapeutic approaches for the related diseases [24, 25]. For example, the downregulation of miR-383 promoted cancer cell proliferation and invasion [26], and miR-665 expression showed the neuroprotective effect on propofol-induced cognitive dysfunction in a rat model [14]. However, there is no evidence showing the effect of sevoflurane anesthesia-induced cognitive impairment on miR-665 expression and the associated mechanism.

In order to investigate the effect of miR-665 expression on sevoflurane-induced learning and memory impairment, we established a cognitive impairment rat model using sevoflurane. The effects of miR-665 expression on the sevoflurane-anesthetized cognitive impairment were studied using constructed lentivirus vectors expressing miR-665 mimics. Neuroapoptosis, the expression of related proteins, rat learning and memory ability, and the cognitive performance were monitored to glean more information on the mechanism of sevoflurane-anesthetized cognitive impairment and the potential of targeting miR-665 for a therapeutic strategy.

Materials and methods

Cell line and cell culture

Human neuronal SH-SY5Y neuroblastoma cells were procured from ATCC (Manassas, VA, USA) and cultured in Dulbecco’s Minimum Essential Medium (DMEM) (Sigma, St. Louis, MO, USA), containing 10% fetal bovine serum (FBS; Sigma, St. Louis, MO, USA) and 100 U/mL penicillin (Sigma, St. Louis, MO, USA) at 37°C with 5% CO₂, using the 96-well plates (BD Biosciences, Rockville, MD).

Cell transfection

The SH-SY5Y cells were pretreated with 5, 10, 20, and 30 μM sevoflurane (AbbVie Inc., North Chicago, IL, USA) for 30 min for in vitro experiments [27]. In addition, the cells were pretreated with PI3K/Akt pathway inhibitor LY294-002 (Sigma, St. Louis, MO, USA) for 30 min as described previously [28]. The cells were plated in 6-well plates (BD Biosciences, Rockville, MD). MiR-665 inhibitor/mimic/scramble (Ambion, Foster City, CA, USA), and chemical siRNA sequences against insulin-like growth factor 2 (IGF-2; Ambion, a miR-665 target predicted using Target Scan Human: http://www.targetscan.org/vert_71/) were used for cell transfection. The transfections of these molecules were performed using Lipoctamine 2000 (Invitrogen, Carlsbad, CA) or lentivirus. The SH-SY5Y cells transfected with scramble or Lipoctamine 2000 were considered as controls.

Animal model

All protocols of animal experiments were reviewed and approved by the Institutional Animal Care and Use Committee at the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital Anesthesiology, Henan, China. Before the experiments, Sprague-Dawley rats (male, 250 ± 10 g, seven-week-old; Vital River Laboratory Animal Technology Co. Ltd., Beijing, China) were housed under a controlled 12 D:12 L cycle condition for seven days with ad libitum access to food and water. The rats were then randomly divided into two groups: a control group receiving regular air inhalation for 6 h and a sevoflurane group receiving 2.5% sevoflurane at 600 μg·kg⁻¹·min⁻¹ in 100% O₂ at the identical conditions for 6 h. The animals were allowed for recovery for seven days after the anesthesia. For animal transfections, lentivirus-miR-665 inhibitor/mimic/scramble and lentivirus-siRNA-IGF-2 were given intracerebroventricularly into the left lateral cerebral ventricles through a pre-drilled skull hole within 10 min after sevoflurane administration [29].

Morris water maze task

The Morris water maze (MWM) test was used to examine spatial learning and memory of rats [30]. In brief, each rat was forced to finish a swim test every day subsequently from each of the four quadrants per day for five days from each of the four quadrants in a circular water pool (colored with black ink, 100 cm in diameter, 50 cm in height) with a 30-cm depth of water and a hidden circular platform (12 cm in diameter) 2 cm below the water surface. The animals were forced to finish swim to find the hidden platform within a maximum of 60 s. The
time each rat spent to find the hidden platform for the first time on day 5 of the trials (latency) was recorded to evaluate the learning ability of the rats [30]. A video camera on the ceiling was used to record the performances of the rats related to swim ability. The time taken to find the hidden platform (latency, s), path length (cm), and swimming speeds (cm·s^{-1}) were analyzed using image tracking software (2020 Plus Tracking System; HVS Image).

qRT-PCR

In order to carry out the qRT-PCR analysis, total RNA was extracted from the cells and rat hippocampus tissues using Trizol (Invitrogen, Carlsbad, CA, USA) after seven days of the last injection of MWM task. The single-strand cDNA was then synthesized and the expression levels of genes and miRNAs were determined by using a Bio-Rad SsofastEvaGreenSupermixkit (Bio-Rad Laboratories, Hercules, CA, USA) with Bio-Rad IQ5 real-time PCR system (Bio-Rad). Primers for qRT-PCR (Sangon, Shanghai, China) are listed in Table 1. β-Actin and U6 were used as the internal reference genes for mRNA and miRNA detection, respectively.

Western blotting

The Western blotting was performed using antibodies specific for postsynaptic density-95 (PSD-95, 1:1000 dilution, Cell Signaling Technology, CST, Danvers, MA, USA), cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB, CST, 1:1000 dilution), and phospho-CREB (p-CREB, CST, 1:1000 dilution), p-PI3K (PI3K, CST, 1:1000 dilution), p-Akt (p-Akt, CST, 1:1000 dilution), and GAPDH (1:2000 dilution, Sizhengbo, Beijing, People’s Republic of China). For the Western blot, the mice were killed and hippocampus tissue proteins were extracted, and the cellular proteins were prepared as described previously. Protein concentrations were determined by Bio-Rad DC protein assay, and subsequently, the proteins were separated on 12% SDS-PAGE. The protein blots were transblotted onto polyvinylidene difluoride membranes (PVDF; Millipore, Billerica, MA, USA), which were then blocked and incubated with the specific primary antibodies at 4°C overnight, and HRP-conjugated secondary antibodies for 1 h. Immunoactive protein bands were visualized by a chemiluminescence reac-

Table 1. Primer list used in this study for qRT-PCR detection

<table>
<thead>
<tr>
<th>Gene names</th>
<th>Primers</th>
<th>Sequences (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-665</td>
<td>Forward</td>
<td>5'-ACCAGAGGGCTGAGG-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-GAGCAGGCTGGAGAA-3'</td>
</tr>
<tr>
<td></td>
<td>RT primer</td>
<td>5'-GGCGTGACGGGCTGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>Forward</td>
<td>5'-GGTGAACTGGGGAGGATTG-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-GCACTGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td>Bcl-xL</td>
<td>Forward</td>
<td>5'-GGGCACTGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-GGGCACTGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td>Bax</td>
<td>Forward</td>
<td>5'-GGGCACTGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-GGGCACTGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td>Beclin 1</td>
<td>Forward</td>
<td>5'-GGTGAATGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-GGTGAATGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td>PSD-95</td>
<td>Forward</td>
<td>5'-GGGCACTGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-GGGCACTGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td>Caspase-3</td>
<td>Forward</td>
<td>5'-GGTGAATGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-GGTGAATGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td>IGF-2</td>
<td>Forward</td>
<td>5'-GGTGAATGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-GGTGAATGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Forward</td>
<td>5'-GGTGAATGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'-GGTGAATGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td>U6</td>
<td>Forward</td>
<td>5'-GGTGAATGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
<tr>
<td></td>
<td>RT and reverse</td>
<td>5'-GGTGAATGGGAGGAAATTAACCACGCGCTAAGGG-3'</td>
</tr>
</tbody>
</table>
MiR-665 against sevoflurane-induced neuroapoptosis

Apoptosis assay

Apoptosis in the transfected cells was detected using an annexin V-Cy5-labeled apoptosis detection kit (Invitrogen) and analyzed by flow cytometry [31]. Briefly, after being transfected with miR-665 mimic/inhibitor/scramble and siRNA-EGF-2 or control for 24 h, the cells were harvested, pelleted, and resuspended in the binding buffer containing annexin V-Cy5 (1:1000) and propidium iodide (PI) for 10 min. Then the cells were analyzed using a FACS Calibur flow cytometer (Becton-Dickinson, CA, USA). Annexin V-Cy5 positive and PI-negative cells (Annexin V+/PI-, early apoptotic cells) were considered to be apoptotic cells.

Dual-luciferase reporter analysis

The reporter vectors of pGL3-IGF-2-3' UTR were synthesized (Sangon Biotech, Shanghai, China) and dual-luciferase (Firefly and Renilla) reporter plasmids IGF-2-WT and IGF-2-Mut, containing the wild-type and mutant IGF-2 putative 3' UTR-binding site, respectively, were constructed. After cell transfection for 48 h, luciferase activities were measured using the Promega Dual-luciferase Reporter Assay kit (Promega, Madison, WI). Fold induction of firefly luciferase activity was normalized to Renilla-luciferase activity for each sample [32].

Statistical analysis

All statistical analyses were performed using SPSS 19.0 software (SPSS Inc., Chicago, USA). All data were expressed as the mean ± standard deviation (SD). The differences between two groups and among more than two groups were analyzed using Tukey's test and ANOVA, respectively. * P < 0.05 was considered statistically significant. The plots were made using GraphPad Prism 6.0 (GraphPad Software Inc, La Jolla, CA, USA).

Results

Sevoflurane inhibited miR-665 expression in vitro

SH-SY5Y cells were treated with 5, 10, 20, and 30 μM sevoflurane and the expression of miR-665 was detected using qRT-PCR. The expression level of miR-665 was decreased in the sevoflurane-treated cells in a concentration-dependent manner (Figure 1A). Sevoflurane at 10, 20, and 30 μM concentrations significantly inhibited miR-665 expressions (P <
MiR-665 against sevoflurane-induced neuroapoptosis

A

Control Sevoflurane Sevoflurane+Mimic Sevoflurane+Inhibitor Sevoflurane+scramble

B

Relative mRNA expression

Control Sevoflurane+Mimic Sevoflurane+Inhibitor Sevoflurane+Scramble

Bcl-2 Bcl-XL Bax Caspase-3

C

Bcl-2 Bcl-XL Bax Caspase-3 GAPDH

D

Relative Bcl-2 mRNA expression

Control Sevoflurane Mimic Inhibitor Scramble

Sevoflurane (20 μM)

E

The ratio of LC3 II/LC3 I

Control Sevoflurane Mimic Inhibitor Scramble

Sevoflurane (20 μM)

F

LC3 II LC3 I Beclin 1 GAPDH

G

Relative PSD-95 mRNA expression

Control Sevoflurane Mimic Inhibitor Scramble

Sevoflurane (20 μM)

H

The ratio of p-CREB/total CREB

Control Sevoflurane Mimic Inhibitor Scramble

Sevoflurane (20 μM)

I

PSD-95 CREB p-CREB GAPDH
Figure 2. MiR-665 mimic exhibits the neuroprotective effect. A. Cell apoptosis detected using annexin V-Cy5-labeled Apoptosis Detection Kit and analyzed by flow cytometry. Annexin V+/PI+, normal cells; Annexin V+/PI-, early apoptotic cells; Annexin V+/PI+, late apoptotic cells; Annexin V-/PI+, necrotic cells; B, C. The expression of the cell apoptosis related protein in SH-SY5Y cell transfected with different kinds of miR-665 vectors; D-F. mRNA and protein expression of the cell autophagy related proteins in SH-SY5Y cells; G-I. mRNA and protein expression of the neuron growth related protein in SH-SY5Y cells. * and ** indicate difference at P < 0.05 and P < 0.01, vs. control, respectively. # and ## indicate difference at P < 0.05 and P < 0.01, vs. sevoflurane, respectively.
MiR-665 against sevoflurane-induced neuroapoptosis

Subsequently, a concentration of 20 μM to treat SH-SY5Y cells for the in vitro experiment was selected. Next, SH-SY5Y cells pretreated with sevoflurane were transfected with miR-665 mimic, inhibitor, and scramble to delineate the miR-665 dysregulation related mechanism (Figure 1B).

MiR-665 mimic exhibits neuroprotective effect

An apoptosis assay was employed to confirm the overexpression of miR-665 inhibited sevoflurane-induced apoptosis of SH-SY5Y cells (Figure 2A-C), attenuated sevoflurane-inhibited cell autophagy (Figure 2D-F), and promoted SH-SY5Y cell growth (Figure 2G-I). SH-SY5Y cells transfected with miR-665 mimic significantly reduced Annexin V+/PI- cell percentage (early apoptotic cells), upregulated Bcl-2 and Bcl-xL expression, and down inhibited Bax and Caspase-3 expression in sevoflurane-treated SH-SY5Y cells. Furthermore, the miR-665 mimic clearly triggered the expression of autophagy factors including Beclin-1 and LC3 II/
MiR-665 against sevoflurane-induced neuroapoptosis

LC3 I ratio in sevoflurane-treated SH-SY5Y cells. Finally, we analyzed the effect of miR-665 mimic on the development of neurons and revealed that miR-665 expression remarkably upregulated the expression of PSD-95 and pCREB. An administration of the inhibitor intensified the influence of sevoflurane on cell functions and the expression of the above factors. No differences were found in the expression and cellular performance among the cells treated with the scramble. This demonstrated that miR-665 benefits in preventing sevoflurane-induced neuron apoptosis, autophagy recession, and synaptic growth inhibition.

Neuroprotective effect of miR-665 by targeting IGF-2

We predicted IGF-2 as one of the miR-665 targets using TargetScan Human (Figure 3A), and subsequently, using the Firefly/Renilla dual-luciferase reporter systems, determined that IGF-2 is a negative target of miR-665. In contrast to the downregulated miR-665 expression, IGF-2 was triggered by sevoflurane treatment and miR-665 inhibitor, and inhibited by miR-665 mimic (Figure 3B and 3C). Using the dual-luciferase reporter assay, it was revealed that miR-665 administration reduced firefly-luciferase activity ratio in the cells transfected with pGL3-IGF-2-WT-3’-UTR vector (Figure 3D). Further, the cotransfection experiments with IGF-2 siRNA and miR-665 inhibitor into SH-SY5Y cells showed an upregulation of the Bcl-2, Bcl-xL, Beclin-1, LC3 II, PSD-95, and p-CREB expressions, and a downregulation of the Bax, Caspase-3 and LC3 I expressions, compared to the transfection of miR-665 inhibitor alone (Figure 3E-I). These data indicated that miR-665 regulates the neuron apoptosis, autophagy, and synaptic growth by negatively targeting IGF-2.

MiR-665-mediated neuron proliferation associates with PI3K/Akt signal pathway

Prior studies have shown that sevoflurane is linked to PI3k/Akt signaling pathway [6, 33]. In order to test whether the neuroprotective effect of miR-665 against sevoflurane is due to the activation of PI3K/Akt pathway, we inhibited the PI3K/Akt signaling pathway using LY294002-an inhibitor against PI3K/Akt signaling pathway [34]. The PI3K/Akt signaling...
pathway was inactivated by sevoflurane but activated by miR-665 mimic transfection (Figure 4A). However, the expression of p-PI3K and p-Akt triggered by miR-665 mimic could be inhibited by LY294002. Next, we found that PI3K/Akt inhibitor LY294002 reversed the miR-665 mimic induced changes in neuron apoptosis, autophagy recession, and the synaptic growth related proteins (Figure 4C). However, the expression of p-PI3K and p-Akt triggered by miR-665 mimic could be inhibited by LY294002. Next, we found that PI3K/Akt inhibitor LY294002 reversed the miR-665 mimic induced changes in neuron apoptosis, autophagy recession, and the synaptic growth related proteins (Figure 4C-I). However, there were no differences in the expression of these factors between control cells and those treated with LY294002 (Figure 4B-I). These data confirm that sevoflurane-inhibited neuron proliferation and the development via miR-665 were dependent on PI3K/Akt signaling pathway.

MIR-665 mimic and siRNA-IGF-2 improve animal performance

In order to delineate the neuroprotective effect of miR-665 against sevoflurane under in vivo conditions, the anesthetized rats with sevoflurane were tested for their performance using MWM task (Figure 4). The time taken to find the hidden platform (latency, s) was significantly different among the groups (Figure 4J). The rats treated with sevoflurane alone or with miR-665 inhibitor showed a high latency time (P < 0.01). On the contrary, miR-665 mimic and siRNA-IGF-2 transfected rats showed a low latency time (P < 0.05). The administration of PI3K/Akt signaling pathway inhibitor LY294002 reversed the influence of miR-665 mimic on rats by increasing latency time. No differences were found in swimming speed among the rats (Figure 4K). These data showed that sevoflurane-inhibited neuron proliferation and the development via miR-665 were dependent on PI3K/Akt signaling pathway.

Discussion

Anesthesia-induced cognitive impairment is probably the most frequent type of postoperative cognitive impairment, which has been found to be associated with miRNA dysregulation [35]. This study was aimed to investigate the effect of miR-665 expression on sevoflurane anesthesia-induced cognitive impairment. We confirmed the neuroprotective effect of miR-665 against sevoflurane anesthesia by targeting IGF-2 and activating PI3K/Akt signaling pathways. A miR-665 mimic reversed the sevoflurane-induced neuroapoptosis, autophagy inhibition, and the motor deficits in rats by negatively targeting IGF-2 via PI3K/Akt signaling pathway.

In an earlier study, propofol anesthesia triggered the expression of miR-665 in the hippocampal neuron of rats, which was accompanied with the downregulation of Bcl-xL [14]. However, in our study, the sevoflurane-anesthetized rats showed decreased miR-665 expression with a decrease in Bcl-xL and Bcl-2 expressions and increase in IGF-2 expression. Taken together, it can be concluded that propofol induces upregulation of miR-665 [14], while sevoflurane anesthesia decreases miR-665 expression as observed in our study. However, both anesthetics promutet neurons apoptosis and postoperative cognitive impairment in rats. This might due to the fact that sevoflurane and propofol differentially changed the expression levels of miRNAs in rat hippocampus [36, 37].

Using the TargetScan Human [38], we predicted and confirmed that IGF-2 serves as the direct target of miR-665 (Figure 2). IGF-2 activates the PI3K/AKT pathway, and IGF-2/P13K/Akt signaling cascade is involved in autophagy and apoptosis [39]. As earlier reported, IGF-2 stimulates IGF1R and subsequently PI3K/Akt and MAPK/ERK signaling, and increases IGF-2 levels accompanied with the activation of ERK1/2 [40, 41]. Moreover, LY294002, a PI3K/Akt signaling inhibitor, could prevent IGF-2-mediated gene modulations [42, 43], demonstrating that IGF-2 mediated PI3K/Akt signaling is essential for cell functions. In this study, we confirmed that IGF-2 is a direct target of miR-665, suggesting the crucial roles of miR-665 in PI3K/Akt pathway related activities via targeting IGF-2.

PI3K/Akt signaling pathway dysregulation is involved in the cognitive impairment induced by diabetes, neonatal hypoxic-ischemic brain damage, cardiovascular disease, and anesthesia [44]. The activation of PI3K/Akt signaling pathway is crucial for neuroapoptosis and autophagy, and its inhibition accelerates hippocampal...
MiR-665 against sevoflurane-induced neuroapoptosis and reduces regular autophagy through targeting apoptosis-related proteins or interaction with other signaling pathways [45, 46]. For instance, Yoshii et al. revealed that the inhibition of MAPK/ERK signaling pathway disrupted PSD95 expression, which is required for p-P13K and p-CREB participations [47]. Moreover, the p-CREB-dependent Bcl-2 signaling, essential for cell apoptosis, is required for PSD95 disruption [47]. In the present study, we determined that sevoflurane anesthesia inhibited miR-655 was accompanied with a concomitant decrease in PI3K/Akt activation, Bcl-2 and Bcl-xL expressions, and regular autophagy along with an increase in Bax and Caspase-3 expressions. All of these changes, however, could be reversed by miR-665 mimic transfection. These indicated that miR-665-mediated neuroprotective effect is linked with the upregulation of the Bcl-2 cascade through P13K/Akt signaling pathway by targeting IGF-2.

Disclosure of conflict of interest

None.

Address correspondence to: Xihua Lu, Department of Anesthesiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital Anesthesiology, No.127 Dongming Road, Zhengzhou 450003, Henan, China. E-mail: xihualu209@yeah.net

References

MiR-665 against sevoflurane-induced neuroapoptosis

MiR-665 against sevoflurane-induced neuroapoptosis

