Original Article

Reverse screening approach to identify potential anti-cancer targets of dipyridamole

Shu-Min Ge1, Dong-Ling Zhan2, Shu-Hua Zhang1, Li-Qiang Song1, Wei-Wei Han3

1School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; 2College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; 3Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, China

Received June 14, 2016; Accepted November 6, 2016; Epub December 15, 2016; Published December 30, 2016

Abstract: Dipyridamole (DIP) inhibits thrombus formation when given chronically, and causes vasodilation over a short time. To date, DIP can increase the anticancer drugs (5-fluorouracil, methotrexate, piperidine, vincristine) concentration in cancer cells and hence enhance the efficacy of treatment cancer. The inhibition of DIP may result in increased 5-fluorouracil efficacy and diminish the drug side effects. But the actual molecular targets remain unknown. In this study, reverse protein-ligands docking, and quantum mechanics were used to search for the potential molecular targets of DIP. The quantum mechanics calculation was performed by using Gaussian 03 program package. Reverse pharmacophore mapping was used to search for potential molecular target candidates for a given small molecule. The docking study was used for exploring the potential anti-cancer targets of dipyridamole. The two predicted binders with the statistically significant prediction are dihydropyrimidine dehydrogenase (DPD) (PDB Id: 1GTE) and human spindle checkpoint kinase Bub1 (PDB Id: 3E7E). Structure analysis suggests that electrostatic interaction and hydrogen bonding play an important role in their binding process. The strong functional linkage of DIP and 5FU supports our prediction. In conclusion, these results generate a tractable set of anticancer proteins. The exploration of polypharmacology will provide us new opportunities in treating systematic diseases, such as the cancers. The results would generate a tractable set of anticancer target proteins for future experimental validations.

Keywords: Dipyridamole, reverse protein-ligand docking, anticancer target proteins

Introduction

Dipyridamole (used as Persantine) is a medicine that inhibits thrombus formation when given chronically and causes vasodilation at a short time. It was well known that dipyridamole inhibits the phosphodiesterase enzymes that normally break down cAMP (increasing cellular cAMP levels and blocking the platelet response to ADP) and/or cGMP (resulting in added benefit when given together with nitric oxide [NO] or statins) [1, 2]. Dipyridamole inhibits the cellular reuptake of adenosine into platelets, red blood cells and endothelial cells leading to increased extra-cellular concentrations of adenosine [3, 4]. In addition, dipyridamole has been shown to lower pulmonary hypertension without significant drop of systemic blood pressure [3, 4]. It inhibits proliferation of smooth muscle cells in vivo and has shown to prevent AV-shunt failure in dialysis patients [4]. Modified release dipyridamole is used in conjunction with aspirin in the secondary prevention of stroke and transient ischaemic attack. This practice has been confirmed by the ESPRIT trial [5]. However, it is not licensed as monotherapy for stroke prophylaxis, although a Cochrane Review has suggested that dipyridamole may reduce the risk of further vascular events in patients presenting after cerebral ischaemia [6].

Dipyridamole (DIP) is a weak basic drug with a pKₐ value of 6.4 and thereby exhibits a pH-dependent solubility with good solubility at a low pH value and poor solubility at a high pH value [7, 8]. For its high permeability and low solubility, DIP is classified as class II drug according to the Biopharmaceutics Classification System (BSC) [9]. Recently, research data indicated that the individual difference in drug absorption and bioavailability of DIP is significant [10, 11]. DIP can increase the anticancer-
cer drugs (5-fluorouracil, methotrexate, piperidine, vincristine) concentration in cancer cells and hence enhance the efficacy of treatment cancer [12-14]. Moreover, it is not clear whether proteins are involved in DIP enhancing the efficacy of treatment cancer.

In this study, proteome-wide ligand binding site analysis, reverse protein-ligand docking, and quantum mechanics are used to search for the potential molecular targets of metformin. The new structural insights obtained from this computational study are expected to stimulate further biochemical studies on the experimental validations of anti-neoplastic proteins.

Materials and methods

Cells, trial grouping and treatment

The human breast cancer cells, MCF7, T47D, MDA-MB-231 and MDA-MB-468, were purchased from the American Type Culture Collection (Manassas, VA, USA), and maintained in the DMEM (Gibco, Grand Island, NY, USA) supplemented with the 100 U/ml penicillin, 100 μg/ml streptomycin, and 10% heat-inactivated fetal bovine serum (Gibco, Grand Island, NY, USA). The dimethyl sulfoxide (DMSO) was purchased from Sigma-Aldrich (CA, USA). The dipyridamole (Sigma-Aldrich) was freshly dissolved in the DMEM medium, neutralized, and filter sterilized immediately prior to the addition to the cell cultures. The breast cancer cells were randomly divided into two groups, including DIP group and control group. The DIP group was treated with the dipyridamole (at the final concentration of 5, 10, 15 and 20 μM, respectively), and control group was treated with DMSO (at the final concentration of 0.1%).

Cell cytotoxicity evaluation

The cell cytotoxicity was assessed according to the selective incorporation of propidium iodide (PI) into the MCF7 cells which lost the integrity of the plasma membrane by using the FACSCaliburflow cytometer. Then the data were analyzed by suing the CellQuest software package (BD Bioscience, CA, USA). The cell cytotoxicity experiment was independently performed at least for 6 repeats.
Identify potential anti-cancer targets of dipyridamole

Quantum mechanics calculation

The quantum mechanics calculation was performed by using Gaussian 03 program package [31, 32]. Density functional theory (DFT) was employed with the three-parameter hybrid exchanging function of Becke and Lee, Yang, and Parr correlation function (B3LYP) [33]. The 6-31G* basis set was applied for the DIP optimization. The HOMO and LOMO were generated by Gaussian view.

Reverse pharmacophore mapping

PharmMapper server is an open-source online platform, and it uses pharmacophore mapping strategy to search for potential molecular target candidates for a given small molecule [19, 20]. It was reported that a large, in-house pharmacophore database derived from annotation of all the target information in TargetBank, BindingDB, and DrugBank was hosted by PharmMapper [19, 20]. The mol2 files of crocetin, picrocrocin, safranal were submitted in PharmMapper and a list of possible binding receptors were received. The list was further annotated to screen out the putative target list pertaining to anti-tumor activity. In this study, Top 300 targets ranked by fit score in descending order was present. The identified 2 structures related to human cancer on the top 10 hits were selected.

Reverse docking procedure using idTarget

IdTarget is an reverse docking web platform for predicting possible binding targets of a small chemical molecule using a divide-and-conquer
Identify potential anti-cancer targets of dipyridamole

Figure 3. The HOMO and LUMO orbit of DIP. A. Illustration for the HOMO orbit of DIP. B. Illustration of the LUMO orbit of DIP.

<table>
<thead>
<tr>
<th>Proteins</th>
<th>Z’-score</th>
<th>Fit score</th>
<th>PDB ID</th>
<th>Related disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dihydropyrimidine dehydrogenase</td>
<td>2.21</td>
<td>5.19</td>
<td>1GTE</td>
<td>Cancer</td>
</tr>
<tr>
<td>GTPase HRas</td>
<td>0.33</td>
<td>3.87</td>
<td>1P2S</td>
<td>Bladder cancer</td>
</tr>
</tbody>
</table>

Docking studying for DIP

In its current iteration, AutoDock vina [34] was used in this study. AutoDock Vina is a new open-source program for drug discovery, molecular docking and virtual screening, offering multi-core capability, high performance and enhanced accuracy and ease of use [34]. These putative 123 off-targets are subject to further investigations using more computationally intensive protein-ligand docking software AutoDock vina [34]. Total of 109 structures are removed from the putative off-target list due to steric crashes.

Normalized docking score

50 structures similar to DIP were extracted from DUD-E database which is built to refine the decoy sets [35]. The protocol to generate decoys for DUD-E is made available online to generate decoys for any target given only a list of ligand structures, which enables extension of DUD-E to new targets of interest by individual investigators [35]. The decoy server extracts directly from the ZINC database [35].

These molecules are docked to 15 proteins (putative off-targets) from the lowest binding
Identify potential anti-cancer targets of dipyridamole

<table>
<thead>
<tr>
<th>IdTarget results</th>
<th>Docking score</th>
<th>UniProt Id</th>
<th>PDB Id</th>
<th>Ki</th>
<th>Related disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human mitochondrial aldehyde dehydrogenase</td>
<td>-9.53</td>
<td>P05091</td>
<td>1O04</td>
<td>103.2 nM</td>
<td>High incidence of acute alcohol intoxication</td>
</tr>
<tr>
<td>Human pyruvate kinase M2</td>
<td>-8.25</td>
<td>P14618</td>
<td>3GQY</td>
<td>895.5 nM</td>
<td>Human cancer</td>
</tr>
<tr>
<td>Nuclear hormone receptor PPAR-gamma</td>
<td>-8.23</td>
<td>P37231</td>
<td>2Q8S</td>
<td>926.3 nM</td>
<td>Type 2 insulin-resistant diabetes, hypertension and cancer</td>
</tr>
<tr>
<td>Phosphatidylinositol 4,5-bisphosphate 3-kinase</td>
<td>-8.13</td>
<td>P48736</td>
<td>2CHX</td>
<td>1.1 μM</td>
<td>Inflammatory diseases</td>
</tr>
<tr>
<td>Phosphotyrosyl phosphatase activator (PTPA)</td>
<td>-8.11</td>
<td>Q15257</td>
<td>2HV7</td>
<td>1.1 μM</td>
<td></td>
</tr>
<tr>
<td>Aminoadipate-Semialdehyde Dehydrogenase</td>
<td>-7.92</td>
<td>P49419</td>
<td>2J6L</td>
<td>1.6 μM</td>
<td>Pyridoxine-dependent epilepsy</td>
</tr>
<tr>
<td>human spindle checkpoint kinase Bub1</td>
<td>-7.92</td>
<td>O43683</td>
<td>3E7E</td>
<td>1.6 μM</td>
<td>Human cancer</td>
</tr>
<tr>
<td>Disintegrin and metalloproteinase domain-containing protein 17</td>
<td>-7.92</td>
<td>P78536</td>
<td>3E8R</td>
<td>1.6 μM</td>
<td>Neonatal inflammatory skin and bowel disease</td>
</tr>
<tr>
<td>Cyclin-dependent kinase 2</td>
<td>-7.88</td>
<td>P24941</td>
<td>2J9M</td>
<td>1.7 μM</td>
<td>Human cancer</td>
</tr>
<tr>
<td>Rho-related GTP-binding protein RhoB</td>
<td>-7.82</td>
<td>P62745</td>
<td>2FV8</td>
<td>1.9 μM</td>
<td>Human cancer</td>
</tr>
<tr>
<td>Nephron migration inhibitory factor</td>
<td>-7.74</td>
<td>P14174</td>
<td>3L5P</td>
<td>2.1 μM</td>
<td>Rheumatoid arthritis systemic juvenile</td>
</tr>
<tr>
<td>Tryptophan--tRNA ligase, cytoplasmic</td>
<td>-7.71</td>
<td>P23381</td>
<td>1R6U</td>
<td>2.2 μM</td>
<td>Possess angiostatic activity</td>
</tr>
</tbody>
</table>
Identify potential anti-cancer targets of dipyridamole

energy conformation using AutoDock vina [34]. The correlation of the docking score to the number of carbon atoms is derived from linear regression for each of the protein receptors. From the linear fitting curve, the average docking score for molecules with a certain number of carbon atoms can be estimated. Based on the fitted average docking score, a normalized docking score DS is calculated as a z-score:

\[DS = \frac{S_i - \mu_i}{\sigma} \]

Where \(S_i \) is the raw docking score for the molecule with \(i \) carbon atoms, \(\mu_i \) is the fitted average docking score for the number of carbon atoms \(i \), and \(\sigma \) is the standard deviation.

\[\sigma = \sqrt{\frac{\sum_{i=1}^{N} (S_i - \mu_i)^2}{N}} \]

Statistical analysis

The SPSS 19.0 software was used for the statistical analysis of data was performed using Students’ t test. Data is presented as a mean ± SEM with \(P<0.05 \) considered statistically significant.

Results and Discussion

DIP is widely used to prevent strokes and vascular thrombosis, and it is here investigated for potential clinical use as a new treatment for cancer [15-18]. It was reported that DIP is a promising agent for breast-cancer treatment [15-18], therefore, which also imploys its potential use in other cancers that show those highly activated pathways. Our results also found that the DIP significantly suppressed the proliferation of the breast cancer cell lines compared to the control group (Figure 1, \(P<0.05 \)).

In this study we have made an attempt to identify the therapeutic targets of the DIP. The chemical structure of DIP was displayed in Figure 1. Milliken charge is also showed in Figure 2.

See from Figure 3, the HOMO orbit and he LUMO orbit of DIP indicated that the phenol ring is the active center of DIP. The energy between the HOMO and he LUMO (\(E_{\text{gap}} \)) is 3.54 eV. The less energy indicated that DIP is easy to bind to the enzyme.

Reverse docking through pharmMapper

Additional putative off-targets of DIP are obtained from PharmMapper server (http://59.78.96.61/pharmmapper/) [19-22]. PharmMapper finds the best mapping poses of the DIP against all the targets in PharmTarget DB [19] and top N potential drug targets as well as respective molecule’s aligned poses are outputted. Among 300 off-targets obtained, 2 proteins with high score related human cancers are selected (Table 1).

Reverse docking through idTarget

It was well known that identification of bimolecular targets of small chemical molecules is essential for unraveling their underlying causes of actions at the molecular level [20, 23]. Many drugs are known to be a unpleasant adverse effects (off-target), but the molecular targets of such effects are largely unknown. The idTarget is a web server that can predict possible binding targets of a small chemical molecule via docking approach, in combination with our recently developed scoring functions and affinity profile of the protein target. The idTarget has been shown to be able to reproduce known off-targets of drugs or drug-like compounds [20, 23].

Protein-ligand docking of putative off-targets

Fourteen putative off-targets predicted from idTarget and PharmMapper are subject to further study. Crystal structures of the 14 proteins come from PDB database. All of the potential off-targets are related to cancer, diabetes and other diseases, including 71.4% of the enzymes.

<table>
<thead>
<tr>
<th>Proteins</th>
<th>Docking score</th>
<th>The No. of docked ligands</th>
<th>Mean</th>
<th>Standard deviations</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1gte</td>
<td>-3.33</td>
<td>49</td>
<td>-3.20</td>
<td>0.60</td>
<td>-0.17</td>
</tr>
<tr>
<td>1o04</td>
<td>-3.20</td>
<td>48</td>
<td>-2.77</td>
<td>0.61</td>
<td>0.54</td>
</tr>
<tr>
<td>3gay</td>
<td>-3.07</td>
<td>49</td>
<td>-3.17</td>
<td>0.43</td>
<td>0.47</td>
</tr>
<tr>
<td>1p2s</td>
<td>-3.03</td>
<td>47</td>
<td>-3.11</td>
<td>0.74</td>
<td>0.33</td>
</tr>
<tr>
<td>3e7e</td>
<td>-2.98</td>
<td>50</td>
<td>-2.70</td>
<td>0.61</td>
<td>-0.11</td>
</tr>
<tr>
<td>3e8r</td>
<td>-2.82</td>
<td>49</td>
<td>-2.15</td>
<td>0.64</td>
<td>0.17</td>
</tr>
<tr>
<td>2j9m</td>
<td>-1.61</td>
<td>48</td>
<td>-1.70</td>
<td>0.60</td>
<td>0.19</td>
</tr>
<tr>
<td>2fv8</td>
<td>-1.41</td>
<td>49</td>
<td>-1.33</td>
<td>0.65</td>
<td>0.25</td>
</tr>
<tr>
<td>3ilp</td>
<td>-1.29</td>
<td>47</td>
<td>-1.25</td>
<td>0.11</td>
<td>0.17</td>
</tr>
<tr>
<td>1r6u</td>
<td>-0.97</td>
<td>49</td>
<td>-1.03</td>
<td>0.33</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Identify potential anti-cancer targets of dipyridamole

9.3% of the receptor, 9.3% of the regulatory factors.

Fourteen potential targets were identified for DIP after the dual reverse screening procedures by idTarget and PharmMapper as mentioned in Tables 1 and 2. The dihydropyrimidine dehydrogenase was related with the normal cancers, and GTPase HRas was related with the bladder cancer (Table 1). Many of these identified potential drug targets of DIP explained the mechanism of anti-cancer activity of DIP extracts in breast cancer induced animal models [24-27].

DIP and 50 decays generated from DUD-E are docked to 14 off-target protein with Autodock Vina. The statistical significance of the predicted binding affinity is estimated in this study. The normalized docking scores for proteins, including 1gte, 1o04, 3gqy, 1p2s, 3e7e, 3e8r, 2j9m, 2fv8, 3l5p and 1r6u, were listed in Table 3. One of predicted binder with the statistically significant prediction is dihydropyrimidine dehydrogenase (DPD) (PDB Id: 1gte) [21].

This enzyme has recently functioned as an adjunct target for anticancer drug design because it also inhibited by 5-fluorouracil (5FU), one of the most widely product for treatment of many common malignancies [24-27]. Severe life-threatening toxicities have been reported after treatment of cancer patients with 5FU.
To date, DIP is utilized as modulators of 5FU treatment [24-27]. Its inhibition may result in increased 5FU efficacy and diminished drug side effects. Another statistically significant binder is human spindle checkpoint kinase Bub1 [28]. It is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment.
Identify potential anti-cancer targets of dipyridamole

The normal mitotic checkpoints of cells displaying microsatellite instability become defective upon transfer of mutant human Bub1 alleles from either of the breast cancer [29, 30]. And thence, we hypothesize DPD and hBub1 are two likely off-targets of DIP.

Binding pose analysis of DPD-DIP complex

In this study, we identify that the proposed binding mode of DIP anti-cancer action in mammary and prostrate tissues is possibly because of binding of DIP to DPD. From **Figure 4**, it can be include that DIP was located in an allosteric site [20-22]. Our results suggest that substrate/inhibitor, 5FU, binding in the active-site pocket subsequently triggers closure of the active site loop (**Figure 5**).

Figure 6A indicated the important residues for 5FU binding. There are five residues (Asn609, Thr737, Asn736, Asn668, and Ser670) making hydrogen bonds with 5FU. Asn609, Thr737, Asn736, Asn668, Ser670, Glu611, Ile613, and Leu612 have electrostatic contact with 5FU, and Gly764 and Lys574 have van der Waals contacts with 5FU.

From **Figures 6B** and 7, Glu75 forms a hydrogen bond (2.15 Å) with the OH group of the DIP. From **Figure 5**, it can seen that that the inhibitor, 5FU, binding pocket contains Asn609, Thr737, Asn736, Asn668, Ser670, Glu611, Ile613, Leu612, Gly764 and Lys574.

As shown in **Figure 6B**, DIP binds to DPD in the binding pocket different from where 5FU is located. DIP is surrounded by amino acids such as His64, Thr65, Glu147, Asn151, Glu75, Arg78, Arg74, Gly71, Thr66, Gly68, Leu67, Arg70, and Lys861. In particular, Arg78 makes a π-cation contact with the phenol ring of DIP. Thus, Arg78 may be important for DIP binding. It was reported that DIP may increase the activity of 5-fluorouracil in a dose-dependent manner [24]. So it can be concluded that DIP functioned as allosteric activator for DPD. The predicted interaction between DIP and DPD is consistent with the existing biochemical and clinical evidences.

Binding pose analysis of DIP-Bub1 complex

From **Figure 7**, it can be seen that DIP and the substrate of Bub1, ATP, located in the different active pocket. Bub1 is ATP-dependent kinase. The docking result is shown in **Figure 8**. There is no hydrogen bond between DIP and Bub1.

As shown in **Figure 9**, DIP is in the binding pocket composed of Asn879, Leu875, Ala797, Glu795, Gly796, Tyr1003, Phe971, Lys919, Ser969, and Asp921.

In conclusion, in this study, the reverse dockings are applied to identify the potential off-targets for DIP. The results generate a tractable set of anticancer proteins. We further explore the binding mode between DIP and the two potential off-targets, DPD and Bub1. Structure analysis suggests that electrostatic interaction and hydrogen bonding play an important role in their binding process. The strong functional linkage of DIP and 5FU supports our prediction.
Identify potential anti-cancer targets of dipyridamole

The exploration of polypharmacology will provide us new opportunities in treating systematic diseases such as cancer.

Acknowledgements

This work was supported by the National Program on Key Basic Research Project (973 Program No. 2012CB71003), and the National Science Foundation of Jilin Province (201015109).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Shu-Min Ge, School of Life Science and Technology, Changchun University of Science and Technology, Weixing Road 7989#, Changchun 130022, China. Tel: +86-431-85583023; Fax: +86-431-85583099; E-mail: zhanddling@sina.com

References

Identify potential anti-cancer targets of dipyridamole

Identify potential anti-cancer targets of dipyridamole
