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Abstract: African American (AA) men with prostate cancer (PCa) have worse disease, with a higher incidence, 
younger age and more advanced disease at diagnosis, and a worse prognosis, compared to Caucasian (CA) men.  
In addition to socioeconomic factors and lifestyle differences, molecular alterations contribute to this discrepancy.  
In this review, we summarize molecular genetics research results interrelated with the biology of PCa racial 
disparity.  Androgen and androgen receptor (AR) pathways have long been associated with prostate growth.  
Racial differences have also been found among variants of the genes of the enzymes involved in androgen 
biosynthesis and metabolism, such as SRD5A2, CYP17, and CYP3A4.  The levels of expression and CAG repeat 
length of AR also show racial divergence and may be critical molecular alterations for racial disparity.  Growth 
factors and their receptors, which promote cancer cell growth, are another potential cause of the disparity; both 
EGFR and EPHB2, two of the most studied receptors, show interethnic differences.  Differences have also been 
found among genes regulating cell apoptosis, such as BCL2, which is increased in PCa in the AA population.  
Recent developments in genetics, proteomics, and genomics, among other molecular biotechnologies, will greatly 
aid the advancement of translational research on PCa racial disparity, hopefully culminating in the discovery of 
novel mechanisms of disease, in addition to prognostic markers and novel therapeutic approaches. 
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Introduction 
 
The incidence of prostate cancer (PCa) varies 
widely between ethnic populations and 
countries. PCa is the most common male-
specific cancer in most Western countries [1-
3].  In the US, there were an estimated 
186,320 new cases in 2008 [4], and it was 
the second leading cause of cancer related 
deaths after lung and bronchus carcinoma [4].  
PCa disproportionately affects African Ameri-
can (AA) men, who have a higher incidence of 
PCa, present at a younger age and with more 
advanced disease, and have a worse 
prognosis than men of other ethnicities [5-8].  
 
Along with positive family history and older 
age, African ancestry has long been recog-
nized as an important risk factor for PCa [2, 9]. 
The underlying reasons for this disparity are 
not well understood, although existing 

evidence implicates important genetic compo-
nents.  While it has been argued that racial 
variation may be largely due to lifestyle, 
dietary, socioeconomic [10, 11], or clinical 
factors, these cannot fully explain the 
discrepancy [6-8, 12] or the results of 
migration studies, and consequently, genetic 
parameters may be important. Studies of the 
pathology and recurrence of tumors in AA and 
CA men have suggested that racial differences 
in the biology of PCa tumors may explain 
observed differences in outcome [13, 14].  We 
studied men treated with radical prostat-
ectomy at an equal-access-to-care facility and 
found AA men continue to have higher PSA 
levels and Gleason scores than CA men in the 
2000s, despite a narrowing of the differences 
in pathologic stage [15]. Our data also 
suggests that socioeconomic factors have 
limited impact on PSA recurrence in AA men 
treated with radical prostatectomy [16] in this 
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group of patients. Thus, the distinct behaviors 
of AA and CA PCa might be biologically or 
genetically encoded. This article summarizes 
the previous and current molecular research 
findings related to PCa racial disparity (Table 
1). 
 
Androgens, androgen receptor, and involved 
pathways 
 
Androgens and the androgen receptor pathway 
constitute the most intensely studied field in 
PCa. Several aspects of the pathway are 
related to the racial disparity of PCa. 
 
Serum androgen levels  
 
Young AA men were shown to have higher 
mean serum testosterone levels (about 15%) 
than CA men [17], and another study of men 
aged 31 to 50 also showed a significantly 
higher mean serum testosterone level among 
AA men [18], which may be related to the 
higher risk of PCa in AA men. There is 
conflicting evidence on the role of androgens 
in the growth and differentiation of prostate 
tumors. Elevated testosterone and dihydro-
testosterone (DHT) have not been persuasively 
shown to increase the risk of PCa, with some 
groups reporting that serum hormones levels 
are higher in PCa patients while others found 
no differences [1, 3]. Although there is no 
clear relationship between circulating andro-
gen levels and PCa [19-21], high levels of 
androgens have long been considered as risk 
factors [19, 22].  
 
Androgen receptors 
 
The human androgen receptor (AR) is a ligand-
dependent nuclear transcriptional factor that 
regulates the expression of genes necessary 
for the growth and development of both 
normal and malignant prostate tissue. In a 
study of malignant and benign prostate tissue 
from AA and CA men who underwent radical 
prostatectomy for PCa, expression of AR 
protein was 22% higher in the benign prostate 
and 81% higher in PCa of AA patients by 
immunohistochemistry [23]. This suggests that 
differences in androgenic stimulation may 
have an important role in racial disparity.  
 
The AR gene is over 90 kb in length and is 
located on chromosome Xq11-12 and consists 
of eight exons. Exon 1 of the gene entirely en-

codes the N-terminal (transactivation) domain, 
which controls transcriptional activation of the 
receptor, as well as two polymorphic trinucleo-
tide repeats (CAG and GGC), which code for 
polyglutamine and polyglycine tracts, respect-
tively, in the N-terminal domain. Prior studies 
indicate that this CAG repeat varies in length 
from 11 to 31 repeats in normal men [24], 
and an inverse relationship has been demon-
strated between CAG repeat length and AR 
transcriptional activation ability [25]. Short 
CAG and GGC repeat lengths have been 
associated with an increased risk of develop-
ping PCa [26-28], specifically individuals with 
CAG repeat length less than 20 and GGC 
repeat length less than 16 [26, 28-30]. 
Striking differences in CAG repeat lengths 
have been observed between populations. AA 
men tend to have significantly shorter repeat 
length than CA men [24, 31, 32]. One study 
examining men at low risk for PCa (normal PSA 
and prostate examination) found that nearly 
twice as many AA men have a CAG repeat 
length less than 20 compared with CA men 
[31].  
 
Biosynthetic enzymes affecting androgen 
 
Variants in the genes of the enzymes involved 
in androgen biosynthesis and metabolism are 
compelling candidates for susceptibility factors 
in PCa pathogenesis.  
 
SRD5A2: It has been suggested that 
intraprostatic DHT levels may be integral to 
racial variations in risk [33]. Testosterone is 
converted to the more active metabolite, DHT, 
by 5α-reductase [154]. DHT binds to the AR, 
and the DHT-AR complex transactivates genes 
with AR-responsive elements [154]. Two 
isozyme forms of 5α-reductase have been 
reported, with the type II enzyme (encoded by 
the SRD5A2 gene) primarily expressed in 
genital skin and the prostate [34].  One study 
revealed that this gene is more polymorphic 
than previously assumed, and that certain 
polymorphisms are restricted to AA men [35].  
This was supported by the finding of SRD5A2 
TA repeat alleles that are only present in high-
risk AA men and not in lower risk CA and Asian 
men [155].  Thus, it has been proposed that 
certain steroid 5α-reductase enzyme variants 
encoded by SRD5A2 genes marked by 
particular TA repeat alleles may result in an 
elevation of enzyme  activity,  leading to an 
increased prostatic level of DHT, which may 
increase the risk for developing PCa.  
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Table 1. Summary of altered genetic polymorphisms and variants of key genes in cancer pathways, changing  
               susceptibility to prostate cancer across race 
Gene Cancer Pathway Racial Heterogeneity of Gene Mutations and Expressions References 
Serum 
Androgen 

  - AA shown to have higher mean serum testosterone levels (about 15%) than 
CA 

 
17, 18 

AR  Gene transcription CAG and GGC repeat length 

- expression of AR protein was 22% higher in the benign prostate and 81% 
higher in PCa in AA than CA 

- AA men tend to have significantly shorter repeats than CA men  

- among low risk of PCa (normal PSA and prostate examination), nearly twice 
as many AA have a CAG repeat length less than 20 compared with CA men 

 
 
23 
 
24, 31, 32 
 
 
 

SRD5A2 Androgen conversion 
(DHT) 

TA repeat alleles 

- present in only AA, not in CA or Asian  
A49T variants 

- increase DHT production, particularly in AA and Hispanic 

 
 
155 
 
39 

CYP17 Androgen synthesis A1 and A2 alleles 

- polymorphisms may have a role in PCa susceptibility in AA but not CA 

- A2 allele was slightly less frequent in AA versus CA, but another study had 
the opposite finding 

 
 
52 
 
39 

CYP3A4 Androgen deactivation G variant 

- considerably more common among AA (>50%) than CA (<10%), Hispanic, or 
Asian 

- in CA, associated with a higher clinical grade and stage, especially if PCa was 
diagnosed at an older age (≥ 64), and is predictive of progression 

- in AA strongly associated with PCa that had aggressive characteristics at 
diagnosis 

- after prostatectomy, increasing copies were found to be associated with 
worse progression-free survival among CA but had virtually no impact on AA 

 
 
58 – 61 
 
 
 
 
67 
 
 
71 

IGF-1 and 
IGFB-3 

Growth factors - AA men have been found to have higher IGF-1 and lower IGFB-3 levels 
 
72 

EGFR Growth factor 
receptor/Signal 
transduction 

CA repeat length 

- the longer allele is significantly more common in Asian individuals and is 
associated with an 80% reduction in EGFR protein expression compared with 
the shorter allele 

- EGFR overexpression in PCa is more common in AA (45%) than CA (18%) 

- no correlation found in another study 
TK domain  

- 4 novel missense mutations found: 3 in Koreans and 1 in CA but none in AA 

 
 
82, 83 
 
 
80, 86 
 
87 
 
88 

EphB2 Tyrosinne kinase 
receptor/Tumor 
suppressor 

K1019X mutation 

- higher in AA with a family history of PCa (15.3%) than CA controls (1.7%)  

- associated with increased risk for PCa in AA with a family history 

- risk for PCa was increased 3-fold among AA who carried at least one copy of 
the allele and had a family history of PCa 

93 
 
 
 
 
 
 

BCL-2 Apoptosis - linkage between increased cancer proliferation and BCL-2 positively seen in 
prostate tumors in AA but not in CA  

 
94 

MDM2 p53 regulator - expression was significantly greater in CA than AA patients (78% CA, 45% AA) 
 
110 

short arm of 
chromosome 
8 (8p22-23) 

(potential) Tumor 
suppressor 

short arm deletion 

-  conflicting findings 

128 – 130 

miRNAs Regulation of 
transcription and 
translation 

let-7c and miR30c 

- higher let-7c and 30c expression in PCa tissue in AA than in CA, but only let-
7c remained statistically significant after normalization 

D. Hatcher 
and P. Lee, 
unpublished 
data 

MSR1  common MSR1 sequence variants 

- in AA, germline mutations was associated with an increased risk of PCa 

- in CA, five common sequence variants had significantly different allele 
frequencies among men with PCa compared with unaffected men, with each, 
except INDEL7, associated with an elevated risk for PCa 

- in AA, Asp174Tyr mutation is nearly twice as common among PCa patients 
compared with controls; however, none were associated with a significantly 
increased risk of PCa 

 
 
152 
 
153 
 
 
 
112 
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Furthermore, the V89L and A49T variants of 
the SRD5A2 gene have been shown to alter 
the conversion of testosterone to DHT [36, 
37].  While the V89L polymorphism is believed 
to decrease the production of DHT [38], the 
A49T variant is thought to increase its 
production, particularly in AA and Hispanic 
men [39]. 
 
CYP17: Located on chromosome 10, the 
CYP17 gene encodes the cytochrome 
P450c17a enzyme [40], which mediates both 
17α-hydroxylase and 17,20-lyase activities at 
key points in testosterone biosynthesis in the 
gonads and adrenals [40].  The 5’-untrans-
lated promoter region of CYP17 contains a 
polymorphic T-to-C substitution that gives rise 
to A1 (T) and A2 (C) alleles [41].  Some studies 
have indicated that the A2 allele may be 
associated with an increased risk of PCa [42-
47]; however, other results have either been 
inconclusive [48, 49] or showed a possible 
increased risk from the A1 allele [50, 51].  The 
results of a meta-analysis suggest that CYP17 
polymorphisms may have a role in PCa 
susceptibility in AA but not CA men [52].  The 
A2 allele was slightly less frequent in AA 
versus CA men, but a different study had the 
opposite finding [53].  Ultimately, there may be 
little difference in A2 frequency and a null 
effect of the CYP17 polymorphism on 
androgen levels. 
 
CYP3A4: Cytochrome P450 3A4 (CYP3A4), a 
protein in the cytochrome P-450 supergene 
family, facilitates the oxidative deactivation of 
testosterone to biologically less active meta-
bolites [54-56], the inhibition of which would 
result in increased levels of testosterone.  
CYP3A4 also has a role in the oxidative 
metabolism of finasteride [57] and could 
impact its effectiveness in PCa treatment.  
Studies of the CYP3A4 variant indicate that it 
may be a determinant of PCa risk.  A germline 
genetic variant in the 5’ regulatory region of 
the CYP3A4 gene (A to G transition) on 
chromosome 7 has been reported.  This 
variant G allele (referred to as CYP3A4 G 
variant) was found to be considerably more 
common among AA men (gene frequency 
>50%) than CA (<10%), Hispanic, or Asian men 
[58-61].  Previous studies found little evidence 
of altered function in the CYP3A4 G variant 
[62-64], but studies later found it was 
associated with a higher clinical grade and 
stage, especially if PCa was diagnosed at an 

older age (≥ 64), and is predictive of 
progression among CA men.  They expected to 
see a similar impact among AA men but did 
not [58-60].  In other research, the G variant 
was inversely associated with risk among men 
with less aggressive PCa [65, 66].  Another 
study found that among AA men, the CYP3A4 
variant was strongly associated with PCa that 
had aggressive characteristics at diagnosis 
[67].   
 
Although these observations support a role for 
the CYP3A4 variant as a biologic marker of the 
aggressiveness of PCa, laboratory investi-
gations have found relatively little evidence of 
functional effects from this polymorphism [62-
64, 68, 69].  However, among certain patients 
with PCa, several other SNPs in CYP3A4 and 
CYP3A5 are associated with risk [66, 70].  
Elsewhere, in a follow-up study of men who 
underwent prostatectomy, increasing copies of 
the CYP3A4 variant were found to be 
associated with worse progression-free 
survival among CA men but had virtually no 
impact on AA men [71].  While the above data 
indicate that differences in CYP3A4 exist 
between AA and CA patients, a better 
understanding of androgen metabolism and 
signaling pathways is needed to understand 
the effect of the G variant in AA men.  
 
Growth factors and receptors 
 
The most studied growth factor receptors 
concerning the racial disparity of PCa are 
EGFR and EPHB2.  In addition, AA men have 
been found to have higher IGF-1 and lower 
IGFB-3 levels, which may cause higher tumor 
growth with lower anti-tumor activity [72].   
 
EGFR 
 
The epidermal growth factor receptor (EGFR) 
plays a critical role in cellular proliferation, 
escape from apoptosis, and promotion of 
tumor cell invasion and is the target of 
anticancer agents, based on evidence that 
increased EGFR signaling is crucial for 
prostate carcinogenesis [73].  Both in vitro and 
in vivo studies have demonstrated that the 
EGFR signaling pathway is critical in the 
progression to androgen-independent disease 
[74, 75].  Moreover, studies have shown that 
EGFR inhibitors effectively hinder the growth of 
both androgen-dependent and androgen-
independent PCa xenografts [76-78]. Several 
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studies have found an increase of EGFR 
expression in androgen-independent and 
metastatic PCa [79, 80] as well as after 
androgen ablation [81].   
 
EGFR is shown to be related to PCa racial 
disparity through intronic dinucleotide (CA) 
repeats and EGFR overexpression [82, 83]. 
Studies have demonstrated major racial 
differences in a dinucleotide (CA)n repeat poly-
morphism in intron 1 of the EGFR gene [83, 
84].  The number of CA repeats (which ranges 
from 14 to 21) has been found to be 
correlated with transcriptional activity [82, 85].  
Specifically, it was shown that the longer allele 
is significantly more common in Asian 
individuals [83] and is associated with an 80% 
reduction in EGFR protein expression 
compared with the shorter allele [82].   
 
EGFR overexpression in PCa is more common 
in AA than CA patients [80, 86].  We reported a 
significant association between EGFR over-
expression and AA race (45% in AA versus 18% 
in CA) [86].  Although one group reported no 
correlation between EGFR expression and race 
[87], their conclusion was based on a small 
number of AA patients.  In addition to its over-
expression, we identified 4 novel missense 
mutations in the EGFR TK domain, 3 in 
Koreans and 1 in CA but none in AA patients 
[88].  Three of the four EGFR kinase domain 
mutations are oncogenic in nature. 
 
EPHB2 
 
The EphB2 gene encodes the EPHB2 receptor 
tyrosine kinase.  The characteristics of EphB2 
and its location near a suspected PCa locus 
make it a potential candidate gene for PCa 
susceptibility.  Several lines of evidence, 
including its inactivation in the DU145 PCa cell 
line and growth inhibition from its over-
expression, suggest EphB2 may be a tumor 
suppressor gene [89].   
 
EphB2 maps to 1p36, which was previously 
shown to be linked with hereditary PCa among 
racially diverse families [90, 91], including AA 
[92].  One study evaluated the role of EphB2 in 
PCa susceptibility in AA men by screening the 
EphB2 gene for germline polymorphisms.  
They identified ten sequence variants in the 
EphB2 gene, including a common nonsense 
mutation, K1019X, among AA PCa patients.  
Their data show that the K1019X mutation in 

the EphB2 gene differs in frequency between 
AA and CA men and is associated with 
increased risk for PCa in AA men with a 
positive family history [93].  This variant was 
observed in much higher frequency among AA 
PCa patients than among healthy AA men.  In 
fact, the risk for PCa was increased 3-fold 
among AA men who carried at least one copy 
of the K1019X allele and had a family history 
of PCa.  Given its high frequency in hereditary 
cases, K1019X likely is associated with 
familial PCa in AA men.   
 
Differences in apoptotic genes in relation to 
prostate cancer racial disparity   
 
Anti-apoptotic Bcl-2  
 
Studies show that altered expression of the 
BCL-2 gene may be an important factor 
underlying the greater aggressiveness of PCa 
in AA men [94].  This gene has a central role in 
preventing cancer cells from dying, via its anti-
apoptotic effect, and its up-regulation in AA 
men may be responsible for PCa cell survival 
and resistance to therapies.  Thus, the 
connection between BCL-2 positively and 
increased proliferation seen in prostate 
tumors in AA but not in CA men may contribute 
to the aggressive behavior of PCa in AA men 
[94].   
 
MDM2 
 
In response to stress, cells activate a complex 
pathway involving tumor suppressor p53 that 
is responsible for cell cycle arrest, DNA repair, 
and apoptosis as protection from the 
deleterious effects of mutation [95].  MDM2 is 
a key negative regulator of tumor suppressor 
p53, by targeting p53 for proteasomal 
degradation [96-98].  We previously reported 
that MDM2 overexpression was significantly 
associated with advanced stage PCa [99], a 
finding later reproduced by other investigators 
[100, 101].  Recent studies have also shown 
that inhibiting MDM2 expression enhances the 
effects of radiation and chemotherapy on PCa 
cells [102-104].  A single nucleotide polymer-
phism in the MDM2 promoter, SNP309, 
enhances transcriptional activation of MDM2 
and has been associated with early onset of 
several types of cancer [105-109].  
 
To determine if the MDM2 SNP309 polymor-
phism plays a role in the aggressive phenotype 
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seen in AA PCa, we examined the association 
between MDM2 SNP309 and MDM2 protein 
levels in PCa patients of different racial 
backgrounds [110].  Somewhat surprisingly, 
we found MDM2 protein expression was 
significantly greater in CA than AA patients 
(78% versus 45%, respectively).  While MDM2 
and AA ethnicity have both been associated 
with poor prognosis, the relationship between 
the two variables in our study was neither 
causative nor correlative.  Thus, while MDM2 
expression in PCa differs between AA and CA 
patients, the data does not support a role for 
the MDM2 SNP309 polymorphism in the 
development of aggressive PCa in AA patients. 
 
Genetics variations between AA and CA 
prostate cancer 
 
Evidence that PCa may be caused by multiple 
genes, interacting in complex manners, 
possibly with environmental factors, has 
continued to grow [1, 2, 9, 39, 46, 58, 71, 
111-114].  There may be ethnic variation in 
the frequency of alleles that may be 
associated with PCa risk and/or progression.  
Although the incidence and mortality for PCa 
may differ among different racial groups, the 
increased risk for PCa attributed to family 
history of this disease is consistent across 
different racial backgrounds, supporting the 
possibility of a common genetic basis of 
disease [115].  The analysis of genetic altera-
tions in PCa is challenging because PCa often 
has genetic and morphological heterogeneity 
and multifocality, the presence of more than 
one lesion of independent origin [116-119].  
Linkage studies, to determine if the tumors in 
AA men are different from those in CA men, 
have identified susceptibility loci for PCa on 
several chromosomes and several candidate 
genes [9, 120].   
 
Chromosome 8 
 
The short arm of chromosome 8 (8p22-23) 
has been proposed as a potential location for 
one or more genes important in the 
development of PCa [121, 122].  The short 
arm of chromosome 8 is frequently deleted in 
both adenocarcinomas and PINs [123, 124], 
which has lead to the assumption that the 
inactivation of an unidentified tumor 
suppressor gene on 8p is involved in prostate 
tumor initiation [125-127].  Studies of 
chromosome 8p loss in AA and CA men have 

generated conflicting findings.  One group 
[128] reported a racial difference in the 
distribution of 8p loss, but another group 
reported none [129].  Another group found no 
differences during both tumor initiation and 
progression, suggesting similar molecular 
events between CA and AA men [130]; 
however, they did find racial differences in the 
association between disease recurrence and 
several prognostic factors of cancer 
progression, including Gleason score, surgical 
margin, and TNM stage.  This was a significant 
finding given the similar baseline profiles of 
the two groups. 
 
miRNA 
 
MicroRNAs (miRNAs) are a class of small, 
endogenous, non-coding RNAs that regulate 
gene expression at the levels of transcription 
and translation [131, 132].  miRNA inhibits 
translation of target genes involved in a variety 
of fundamental cellular processes including 
organ development, differentiation, and 
cancer formation [133-136]].  Functional 
studies of individual miRNAs have since shown 
that miRNAs can act as oncogenes or tumor 
suppressor genes [137-141].  We showed that 
miRNAs are differently dysregulated in 
neoplasms other than PCa, such as uterine 
leiomyomas between AA and CA women, 
indicating that miRNA expression is associated 
with the racial disparity of cancer [142].  In 
prostate, the expression of 5 miRNAs, miR-
30c, miR-301, miR-219, miR-261, and miR-
1b1, were reported racially different in benign 
prostate tissue [143].  We recently examined 
the expression of commonly dysregulated 
miRNAs in PCa in relation to race and revealed 
racial difference for the expression of let-7c 
and miR30c in AA prostate tissue (D. Hatcher 
and P. Lee, unpublished data).  Thus, miRNA 
might play a role in the racial disparity of PCa.   
 
Distinct gene expression and genome-wide 
copy number variation between AA and CA 
prostate cancer 
 
Currently, we are taking a genome-wide 
approach to studying the more aggressive 
clinical behavior of PCa in AA patients 
compared to CA patients.  Gene expression 
profiling with Affymetrix microarray revealed 
distinct clustering of patients by racial group (I. 
Osman, unpublished data).  We also identified 
27 chromosomal regions with significantly 
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different copy number changes between AA 
and CA patients.  Copy number changes were 
also significantly associated with gene 
expression changes.  28 chromosomal regions 
were significantly different between the AA and 
CA PCa. 11 regions were more commonly 
altered in AA patients compared to CA patients 
[144]. This data further suggests there are 
distinct genetic differences contributing to 
racial difference in PCa.  
 
PSA levels in AA and CA prostate cancer 
patients 
 
The PSA test, approved by the FDA in 1986 for 
monitoring disease status and in 1992 for 
disease diagnosis, is performed on 
symptomatic and asymptomatic men in an 
effort to diagnose PCa early and to monitor 
disease recurrence and progression [145].  
Past surveys of urologists revealed significant 
variation in the use of the PSA test [146], 
including racial disparities in PSA surveillance, 
with AA men half as likely as CA men to receive 
annual monitoring [147].  After the 1995 
publication of clinical guidelines from the 
National Comprehensive Cancer Network, the 
American Urological Association, and the 
American College of Radiology, however, there 
has been an increase in evidence-based 
staging techniques and a decrease in racial 
disparities [148].  A recent study concluded 
that PSA testing is probably not able to explain 
current racial differences in PCa mortality 
rates [149]. 
 
Interestingly, recently a relationship was 
reported between serum PSA levels and 
polymorphisms in the PSA and AR genes 
[150].  Specifically, serum PSA levels incre-
ased by 7% with each decreasing AR CAG 
repeat allele size among individuals homo-
zygous for a single nucleotide polymorphism in 
the PSA gene promoter.  A recent study of the 
ERDA1 locus revealed that large CAG repeats 
are more common among Asian populations, 
less common in populations of European 
ancestry, and least common in African 
populations [151].  This pattern is very similar 
to that which was observed in the study of the 
AR trinucleotide repeats. 
 
Other genes potentially involved in PCA racial 
disparity 
 
MSR1 

Recently, the macrophage scavenger receptor 
1 (MSR1) gene has been proposed as a link 
between germline alterations in 8p and PCa 
[152, 153].  Both common sequence variants 
and rare germline mutations have been 
suggested as potential PCa susceptibility 
factors.  Several rare germline mutations of 
the MSR1 gene were found to cosegregate 
with PCa, and at least one of the germline 
mutations was associated with an increased 
risk of PCa among AA men [152].  In a 
subsequent study of CA men, the same 
authors examined five common sequence 
variants of MSR1 and reported significantly 
different allele frequencies for each of the 
variants among men with PCa compared with 
unaffected men [153], with each, except 
INDEL7, associated with an elevated risk for 
PCa.  An ensuing study examined each of 
these five common MSR1 sequence variants 
in AA men [112].  They found that the 
Asp174Tyr mutation is nearly twice as 
common among PCa patients compared with 
controls; however, after adjusting for age, 
none of the sequence variants were 
associated with a significantly increased risk of 
PCa, providing limited support for an 
association in AA men.   
 
Conclusion 
 
Though studies show a biological basis behind 
the racial disparity of PCa, more studies are 
needed.  Current technologies will allow a 
more focused approach towards identifying 
those genetic and biological factors involved in 
the racial disparity of PCa, leading to the 
discovery of new prognostic markers and novel 
therapeutic approaches to this disease. 
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